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Pandamator (ancient Greek for all-subduing, an adjective commonly attached to 

time), is an open-source project aiming to enable handling of temporal databases 

using common RDBMSs lacking temporal support. It consists of: 

• Predetermined decisions as to what kinds of temporal data can be 

accommodated and their representation in SQL 

• Definitions of tables, views, functions and stored procedures that together 

provide a supporting infrastructure for defining and using temporal tables 

• An SQL generator that generates triggers for maintaining temporal referential 

integrity and other procedural code 

• Run-time support to create temporal UPDATE and DELETE scripts from 

within user programs 

• A middleware that translates temporal SQL to regular SQL (unfinished) 

Pandamator does not require a thorough understanding of temporal databases, but its 

benefits are not automatic either. Using a temporal database, even with the help of 

Pandamator, is an order of magnitude more difficult that using a non-temporal one. 

As such, it should be a conscious decision. However, the reason I created Pandamator, 

is that it is often a decision that has already been taken by necessity, since temporal 

data are almost ubiquitous. In that case, it is better to do it the correct way rather than 

improvise. 

In its current incarnation, Pandamator works with Microsoft SQL Server. 
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Pandamator Cheat Sheet 

 

Using Pandamator consists of the following steps: 

 

1. Prepare the database 

Run AddTemporalSupport.sql to define the metadata tables and other 

supporting SQL (cf.Adding Validtime Support). 

 

2. Prepare your schema 

Add the appropriate timestamp columns to your temporal-to-be tables 

(cf. Time-varying data, Timestamped data). 

 

3. Declare temporal annotations on your schema 

Declare the temporal type of tables and all necessary integrity 

constraints (cf.Declaring a Validtime Constraint). 

 

4. Generate SQL for integrity constraints 

Generate and run the necessary SQL to create views, procedures and 

triggers necessary to enforce the integrity constraints (cf.Refreshing 

the Validtime Support). 

 

5. Create temporal-aware SQL in your code 

Run-time support for temporal DML is provided in two ways: specialized 

calls for code generation of DELETE and UPDATE (cf. 

CreateSQLDeleteCascading, CreateSQLUpdateNonKey), and code 

transformation from temporal SQL (ATSQL) to SQL92 (cf. Using 

Temporal SQL (experimental)). 
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Intended Audience 

This text was written to accompany Pandamator, an open-source project that helps 

programmers work with temporal databases in the absense of such support from the 

RDBMSs. Because working with temporal data is not usually taught and not usually 

practiced, this text presents all relevant notions without presupposing anything more 

than knowledge of SQL. It was written with the professional programmer in mind.  

The field of temporal database research is vast and old, but has not found its way into 

the mainstream yet. This is unfortunate, as we are using temporal data here and now, 

and doing so in an ad-hoc and mostly wrong manner. You won’t find raw science in 

this text, although I present links to free information you can start your own research 

from, and academic sources can provide you with many more. This text contains 

distilled knowledge only, and often I do not sidetrack in order to present alternative 

views or solutions, in the interest of parsimony. So, if you are a scientist in this 

domain, you will probably not find anything original in this text, but it might still be 

of interest as the practitioner’s view on the subject. 
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Temporal Notions 

What are temporal data 

Temporal data are often characterized as data that vary with time (state relations, as 

you will see below), for example when we need to track all modifications of the 

attributes of an entity, or when we need to plan accommodations for hotel rooms in 

advance. I take a slightly broader view than that, encompassing also simple 

timestamped data (event relations, as you will see below), usually downplayed in the 

field of temporal databases (for example, SQL2 and ATSQL do not mention them at 

all). Temporal data exist, that are neither state nor event relations, but they can always 

be transformed to one or the other in order to become amenable to proper temporal 

treatment. 

Plain relations, like the ones in conventional databases, are called snapshot relations. 

Dimensions of time 

There are at least two dimensions of time that are usually employed in temporal 

databases, usually called valid time and transaction time. The valid time of some 

information marks when that information is supposed to hold in real life. In that sense, 

valid time in the past signifies the recorded past and valid time in the future signifies 

information that does not actually exist yet, but we know it is scheduled to. The 

transaction time of some information marks when this information was included in the 

database. As such, it records the history of modifications of a database. Blending the 

two dimensions, we have bitemporal databases that record the history of 

modifications of a database that records time-varying information.  

These two dimensions of time are regarded as orthogonal, which they are, but there is 

a subtle difference between them. A piece of valid-time temporal information can be 

regarded as the annotation of some piece of non-temporal data with the corresponding 

valid time. The valid time characterizes the information. A piece of transaction-time 

temporal information, on the other hand, is some piece of information (temporal or 

not), annotated with a transaction time. In the case of bi-temporal data, the transaction 

time annotates the valid time, not the other way around. 

 

Figure 1: Bitemporal Annotation Schematic 

Pandamator currently supports only the valid time dimension. 

Time-varying data 

Data varying with time will be described by rows annotated with a time period, 

represented in SQL by two datetime columns, namely ValidFromDate and 

ValidToDate. Together, they record a Closed-Open interval in the valid time 

dimension, meaning that the associated row is valid at any time between 
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ValidFromDate inclusive and ValidToDate exclusive. Closed-open intervals can be 

chained back-to-back to cover longer periods. To be frank, using closed-closed 

intervals would allow a uniform representation that could be used for both state and 

event data, but chaining closed-closed intervals would necessitate dealing with the 

granularity of time in an RDBMS and how to form such intervals. This is a topic best 

avoided since the established RDBMSs have wildly ad-hoc behavior in that domain
1
. 

Data sets of time-varying data will be called state sets or state relations, as they 

record distinct states of the world at different instants of time. For reasons of 

parsimony, state relations that are persisted in tables or returned to the user (as 

opposed to intermediate results of operations) will have the extra property of being 

coalesced, meaning that adjacent time spans are merged when they contain the same 

attribute values. Being coalesced or not does not alter the meaning of a state relation, 

though. 

Individual rows in a state relation are called temporal items, and identifiers of the 

modeled objects are called object surrogates. The set of all temporal items describing 

the lifetime of a modeled object is called a life-line or a time-sequence (in which case 

a whole relation is called a time-sequence collection). 

Let’s look at a first minimal example of a state relation. 

Data Table 1: Example of a state relation 

id (PK) val ValidFromDate ValidToDate 

1 1 2008-01-01 2008-01-10 

1 2 2008-01-10 2008-01-20 

1 1 2008-02-01 2008-02-10 

2 1 2008-01-15 2008-02-25 

This relation describes the lifetime of two entities (as defined by the “id” primary 

key). The entity with id=1 had a “val” attribute of value 1 from January 1
st
 to January 

10
th

 (exclusive) and from February 1
st
 to February 10

th
 (exclusive), and a “val” 

attribute of value 2 from January 10
th

 to January 20
th

 (exclusive). The entity with id=2 

had a “val” attribute of value 1 from January 15
th

 to February 25
th

 (exclusive). 

We are always operating under a “closed-world assumption”, so the entity with id=1 

is supposed to not exist at all before January 1
st
, during January 20

th
 and  February 1

st
, 

and after February 10
th

. The entity with id=2 is supposed to not exist at all before 

January 15
th

 and after February 25
th

. 

Timestamped data 

Timestamped data will be described by rows annotated with a timestamp, represented 

in SQL by a datetime column named ValidOnDate. Data sets of timestamped data will 

be called event sets or event relations, as they record distinct events in time. 

                                                 
1
 For example, Microsoft SQL Server offers a granularity of 1/300

th
 of a second and the smallest 

increments / decrements it allows are milleseconds but rounded approximately to 3 ms (1/300
th

 of a 

second). Oracle offers a configurable fractional second granularity of up to 1 nano-second and allows 

arithmetic using the INTERVAL datatype with fractional seconds. 
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Like I said, event relations are often not given any attention. I believe this is wrong, 

and these are my reasons. For one thing, such data are very common right now in all 

application domains and the need they fulfill will not go away after the adoption of 

temporal databases. They represent discrete events of the modeled reality, 

observations, readings from sensors and other similar data. In addition to their 

inherent value, they are useful even when the temporal data we intend to use are state 

relations, because many useful queries are naturally formulated in terms of event 

relations. For example, “At what instants did something happen?” (a transition 

between two states, the beginning or ending of something), “How many times did 

something happen?”. 

Event relations can be used to represent transitions between states, and state relations 

can be used to represent what holds between events. In this manner, event relations 

and state relations are complementary views of reality and switching between these 

views can be very useful. I call the operation of producing event timestamps from a 

state relation, “demarcation”, and the converse operation of producing indivisible 

spans from an event relation, “spanning”. 

Let’s look at a first minimal example of an event relation. 

Data Table 2: Example of an event relation 

id (PK) val ValidOnDate 

1 1 2008-01-01 

2 2 2008-01-10 

3 2 2008-02-01 

4 1 2008-02-15 

This relation describes four events that happened on the dates January 1
st
, January 

10
th

, February 1
st
 and February 15

th
. 

Although event relations are represented differently than state relations, Pandamator 

operates on them as if they were state relations with ValidFromDate=ValidOnDate 

and ValidToDate=ValidOnDate + dt, where dt is an arbitrarily short duration that 

never needs to be specified explicitly, as it is factored out of all computations. It does 

not correspond to the granularity of the database, it’s just supposed to be small 

enough so that for every time T that could appear in the data, there is no time T’ that 

could appear in the data, so that T ≤ T’ ≤ T+dt. So, event relations are used as state 

relations that can only be valid at a single moment, of those moments that can be 

represented in our database.  

User-defined time 

Columns in a temporal table may also be of a temporal type. They are treated as any 

other value would be, without any special treatment. In order to make evident that 

these values do not interact with the concept of time dimensions, they are thought of 

as user-defined time. 

Explicit and implicit data 

I also make the distinction between explicit and implicit data. Explicit data are data 

actually stored in SQL tables containing the annotation columns just described. 

Implicit data, on the other hand, are data that are described indirectly but are, 
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nevertheless, most useful to us when transcribed to state or event relations. Such data 

in Pandamator are periodically scheduled data and data described by state transition 

rules on event relations, to be described later. 

Now and Forever 

The last row of a history needs to have some specific value for its ValidToDate, 

which we might intend to be ‘now’, ‘forever’, ‘don’t know’, ‘until changed’ or NULL 

i.e. no value at all. In order not to digress in this discussion, the value I use is January 

1
st
, 3000, which is sufficiently distant not to be mistaken for an actual input value and 

can be represented by virtually all RDBMSs (cf. Snodgrass: Developing Time-

Oriented Database Applications in SQL). But practically any distant value will do, so 

long as the interval it forms with a real one will make sense. 

Snapshot at a specific instant 

A temporal database can be thought of as describing a multitude of non-temporal 

databases, one for each moment in time. Projecting a temporal database to the time 

dimension produces what is called a snapshot, which is the state of the described 

universe of discourse at the specific moment. The result is a non-temporal relation. 

 

Figure 2: Snapshots s1, s2, s3 etc. 

Producing a snapshot is very simple with the representation I have described, as it 

suffices to adorn every WHERE clause of every subquery with the condition 

p.ValidFromDate <= T and T < p.ValidToDate, where T is the moment in question, 

for every table p that appears in the subquery. The simplicity of this operation, sadly, 

is not shared with any other operation in the field of temporal support. 

Given the state relation example from a previous section, its snapshot on February 5
th

 

is the following snapshot relation. 

Data Table 3: Snapshot of the example state relation 

id (PK) val 

1 1 

2 1 

Viewing a temporal database as shorthand for describing snapshot databases at 

various time instants allows one to structure temporal data correctly. For example, a 

relation with columns for a validity period and a column to hold the total energy 

consumption in kWh during that period does not make sense as a state relation, 

because projecting at any given instant does not produce anything meaningful. A state 

relation with a column to hold current energy consumption in kW, on the other hand, 

is correctly designed because its snapshot equivalent means something at any instant 
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in time. Such “semi-conformant” relations can be transformed into proper state 

relations in order to benefit from all the tools available for proper temporal data. 

Query at each instant (sequenced query) 

Generalizing a query to produce results at each instant in time is quite difficult, but it 

is central to using a temporal database. These kinds of queries are referred to as 

“sequenced queries” in most of the bibliography, and you’ll have to look it up if you 

want to know why on earth they are named that way. All it matters is that sequenced 

queries are state relations composed of the equivalent snapshots, which means that 

there is no interaction whatsoever of different instants among themselves. Sequenced 

queries do not and can not refer to the timestamping columns. 

An example of a sequenced query is calculating COUNT(*) on the state relation from 

a previous section. The resulting state relation follows. 

Data Table 4: Example of a sequenced query 

COUNT(*) ValidFromDate ValidToDate 

1 2008-01-01 2008-01-15 

2 2008-01-15 2008-01-20 

1 2008-01-20 2008-02-01 

2 2008-02-01 2008-02-10 

1 2008-02-10 2008-02-25 

 

Query across time (non-sequenced query) 

The third kind of queries in a temporal database is queries across all time. These 

queries do not enjoy any kind of support from Pandamator (or any other temporal 

SQL) but I have tried to tackle some common kinds of such queries in the sequel, and 

hopefully provide useful tips. 

Many useful non-sequenced queries can be expressed on top of sequenced queries. 

For example, using the state relation from a previous section, finding the longest 

amount of time two or more entities had the same “val” attribute values. This can be 

done in two steps. 

First, calculate VAL GROUP BY VAL HAVING COUNT(*)>1 as a sequenced 

query (rows eliminated by HAVING are shown for clarity, but struck through). 

Data Table 5: Example of a sequenced subquery of a non-sequenced query 

val COUNT(*) ValidFromDate ValidToDate 

1 1 2008-01-01 2008-01-10 

2 1 2008-01-10 2008-01-20 

1 1 2008-01-15 2008-02-01 

1 2 2008-02-01 2008-02-10 

1 1 2008-02-10 2008-02-25 
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The remaining task is easy to compute given the resulting state relation and making 

explicit use of the timestamping columns.  

This partitioning of non-sequenced queries into sequenced subqueries and non-

sequenced outer queries means that, even though there will be no inherent support for 

non-sequenced queries in Pandamator, its upcoming support of sequenced queries will 

benefit this area as well. 

Coalescing 

Coalescing, in the context of temporal data, means to merge adjacent timestamped 

rows having identical column values, in order to represent a temporal relation in the 

fewest number of timestamped rows possible. There is but a single such 

representation for each relation, so a coalesced representation can be considered a 

normal form. 

Whether two values are identical or not, is a notion that is wider than the three-valued 

equality of SQL. In essence: 

• When both values are non-null, they are identical if they are equal. 

• When both values are null, they are identical, as well. 

• When one is null and the other is not, they are not identical. 

Integrity 

One of the big hurdles when working with temporal databases is maintaining 

integrity. Integrity comes for free when using plain SQL in a plain RDBMS, but 

expressing it for temporal data is especially challenging. You will see that the amount 

and the complexity of the SQL code needed virtually ensures that, even when people 

annotate data with intervals and effortlessly use snapshot queries, do not go the extra 

step to add it. Combined with the difficulty to modify temporal data correctly, the 

result is damaged data. 

The integrity constraints currently offered by Pandamator are explained subquently. 

Candidate constraints for inclusion in the future are: 

• Foreign keys on Unique constraints, not just on the Primary Key 

• Time-invariant constraints on specific columns 

 

Primary Key and Unique 

There cannot be any instant where two or more rows have the same values for the 

primary key columns. A primary key for event relations can be described in plain 

SQL, but state relations demand a complex trigger. 

Pandamator also supports unique constraints, which have similar semantics but whose 

columns are nullable. Currently, foreign keys can only reference primary key 

columns, not columns of unique constraints. 
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Figure 3: Primary Key Violation example 

 (In this and the following such diagrams, 

time increases to the right.) 

There are two entities (named “A”) with 

the same values for their primary key, 

overlapping during the period shown in 

blue. 

Foreign Key 

There cannot be any instant where a row in the referencing table does not correspond 

to a row in the referenced table. 

Pandamator does not support other unique constraints, so a foreign key can only refer 

to a primary key. 

 

Figure 4: Foreign key violation example 

Entity B has a foreign key towards entity 

A, but entity A does not exist during the 

period shown in grey. 

Foreign Key is characterized by a delete rule, prescribing what happens during a 

DELETE. I don’t encourage updates to primary keys, consequently Pandamator does 

not support update rules on Foreign Keys.  

On Delete Cascade 

 

Figure 5: On Delete Cascade 

Deletion of A cascades to B for the 

deletion period, breaking B up as needed. 

On Delete Set Null 
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Figure 6: On Delete Set Null 

Deletion of A sets the foreign key on B to 

NULL for the deletion period, breaking B 

up as needed. In the example, a period of 

B shown in blue, is broken up into three 

periods, the middle one shown in light 

blue having NULL as foreign key. 

On Delete Restrict 

 

Figure 7: On Delete Restrict 

Deletion of A is inhibited if a foreign key 

exists to it at any time during the deletion 

period. 

Constant 

Columns defined as constant are immutable over time. This constraint, like that of 

contiguous history, has no counterpart in plain SQL, and is a non-sequenced 

constraint.  

Contiguous History 

This is just a handy constraint to ensure that a state relation does not have gaps in its 

history. In other words, between two instants when an entity does exist with a specific 

primary key, there cannot be any instant when that entity does not exist. This 

constraint, like constant, has no counterpart in plain SQL, and is a non-sequenced 

constraint. A relation that has a contiguous history and whose columns are all 

constant is coalesced to a single database row. 

The state relation used as an example in a previous section is not contiguous, as the 

entity with id=1 has a gap from January 20
th

 to February 1
st
.  
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Figure 8: Contiguous History violation 

example 

Entity A has a gap in its history, during 

the period shown in grey. 

Specialized Temporal Relations 

Although Pandamator does not handle transaction time, when a relation is used in 

such a manner that transaction time interacts in a specific manner with valid time, it is 

called a specialized temporal relation, and one can find a corresponding taxonomy in 

the Jensen Thesis. According to that taxonomy, a relation whose transaction time 

coincides with its valid time, it is called a degenerate relation. If one just adds valid 

time to an existing application, using snapshot operations at time ‘now’ throughout, 

the database will consist of degenerate relations. The valid time of such a relation, 

effectively stores the history of modifications. 
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Temporal SQL (ATSQL) 

The dialect of temporal SQL understood by Pandamator is based on ATSQL. 

Differences from ATSQL stem mainly from the fact that ATSQL was supposed to be 

an extension of SQL3, while Pandamator ATSQL is based on SQL2 and makes no 

effort to simulate the existence of the PERIOD datatype. Another difference is that 

ATSQL did not support INSERT that mentions a whole query as the source, did not 

support UPDATE and DELETE that mention joined tables, nor did it support 

common table subexpressions. Also, ATSQL did not support event relations and did 

not offer a way to perform a time-slice operation on anything other than the current 

instant
2
. However, for reasons of continuity I will refer to the temporal dialect of 

Pandamator as ATSQL, since someone familiar with the published version of ATSQL 

will find it instantly recognizable. Whenever there is a notable difference from 

ATSQL, I will clearly signal it. 

In the current version (1.9.4), support of ATSQL is partial, has not been tested 

extensively but seems stable enough. In order to permit a seamless user experience, 

the user can delimit any SQL statements which should be passed uninterpreted to the 

RDBMS with BEGIN NONSEQUENCED and END NONSEQUENCED.  

Temporal Type of a Relation 

Temporal SQL statements mean different things depending on the temporal type of 

the relation they apply to and the specific SQL statement. I will call that relation, the 

“unmodified relation”, a term of my own invention. The term “temporal type”, also of 

my own invention, does not have a concise name in ATSQL and is roughly referred to 

as “whether the table has temporal support”, since ATSQL did not extend beyond 

state relations. 

The following table can be used to determine the temporal type of a pairwise join. In 

order to determine the temporal type of a multiple join in a query, one has to process 

all joins pairwise. The type of join (cross, inner, etc) is irrelevant, and Pandamator 

does not even interpret the logic behind each type of join, since it transforms temporal 

SQL into regular SQL that uses the same types of joins. Note that the presence of an 

event relation forces a temporal type of ‘event’. 

Table 1: Temporal Type of a Pairwise Join 

 Snapshot (regular, 

non-temporal) 

State Event 

Snapshot 

(regular) 

Snapshot State Event 

State  State Event 

Event   Event 

                                                 
2
 Teradata (http://www.teradata.com/t/database/Teradata-Temporal/) uses the syntax “AS OF 

timestamp” where Pandamator uses “ON timestamp” for such queries 
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In order to determine the temporal type of an unmodified relation, one should also 

combine the table source (table or join) in FROM with the temporal type of all 

directly referenced subqueries, using the same pairwise table. This is because  

subqueries are syntactic sugar and that they ultimately correspond to joins (‘hidden’ 

joins).  

EXCEPT , INTERSECT and UNION between relations of different temporal type is 

forbidden. 

Temporal Statement Modifiers 

ATSQL makes use of what are called “temporal statement modifiers”, which are short 

annotations placed before regular SQL to denote the appropriate temporal 

interpretation. This concept allows a programmer to transfer regular SQL skills to the 

temporal domain, and appropriate defaults allow programs with existing SQL code to 

switch to temporal SQL without any modification. 

Temporal Statement Modifiers make use of the “reserved words” VALIDTIME and 

NONSEQUENCED. The following tables define the operation and the resulting 

temporal type of SQL statements. 

Table 2: Temporal Statement Modifier effect on SELECT 

Temporal Statement 
Modifier 

Meaning on regular 
tables 

Meaning on state or 
event tables 

(nothing) Regular SQL, returns 

snapshot relation 

Snapshot at current instant, 

returns snapshot relation 

VALIDTIME ON <x> Not applicable Snapshot at specified 

instant, returns snapshot 

relation 

VALIDTIME Not applicable Sequenced semantics, 

returns state or event 

relation 

VALIDTIME FROM <x> 
TO <y> 

Not applicable Sequenced semantics, limits 

operation to specified span, 

returns state or event 

relation 

NONSEQUENCED 
VALIDTIME 

Regular SQL, returns 

snapshot relation 

Non-sequenced semantics, 

returns non-temporal 

relation 

NONSEQUENCED 
VALIDTIME FROM <x> 
TO <y> 

Regular SQL, returns state 

relation with specified span 

Non-sequenced semantics, 

returns state relation with 

specified span 

NONSEQUENCED 
VALIDTIME ON <x> 

Returns event relation with 

specified timestamp 

Non-sequenced semantics, 

returns event relation with 

specified timestamp 

Table 3: Temporal Statement Modifier effect on DELETE/UPDATE 
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Temporal Statement 
Modifier 

Meaning on regular 
tables 

Meaning on state or 
event tables  

(nothing) Regular SQL Operate from current instant 

to forever 

VALIDTIME ON <x> Not applicable Operate from specified 

instant to forever 

VALIDTIME Not applicable Sequenced semantics, 

operate at each instant 

VALIDTIME FROM <x> 
TO <y> 

Not applicable Sequenced semantics, limit 

operation to specified span 

NONSEQUENCED 
VALIDTIME 

Regular SQL Non-sequenced semantics 

NONSEQUENCED 
VALIDTIME FROM <x> 
TO <y> 

Not applicable Not applicable 

NONSEQUENCED 
VALIDTIME ON <x> 

Not applicable Not applicable 

Table 4: Temporal Statement Modifier effect on INSERT 

Temporal Statement 
Modifier 

Meaning on regular 
tables 

Meaning on state or 
event tables  

(nothing) Regular SQL Insert from current instant to 

forever 

VALIDTIME ON <x> Not applicable Insert from specified instant 

to forever 

VALIDTIME Not applicable Sequenced semantics, insert 

at each instant 

VALIDTIME FROM <x> 
TO <y> 

Not applicable Sequenced semantics, limit 

insertion to specified span 

NONSEQUENCED 
VALIDTIME 

Regular SQL Non-sequenced semantics 

NONSEQUENCED 
VALIDTIME FROM <x> 
TO <y> 

Not applicable Not applicable 

NONSEQUENCED 
VALIDTIME ON <x> 

Not applicable Not applicable 

Inheritance of Temporal Statement Modifiers 

Temporal statement modifiers are inherited from the outer scope to inner scopes, 

unless overridden by explicit modifiers. This necessitated the introduction of an 

explicit modifier for snapshot operation, because in usual ATSQL, there was no way 

to specify snapshot semantics for an inner query whose absence of an explicit 

modifier would make it inherit an implicit one from its outer scope. The following 

table lists the inherited temporal statement modifiers. 
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Table 5: Inherited Temporal Statement Modifier 

Outer Inherited 

VALIDTIME ON <x> VALIDTIME ON <x> 

VALIDTIME VALIDTIME 

VALIDTIME FROM <x> TO <y> VALIDTIME 

NONSEQUENCED VALIDTIME NONSEQUENCED VALIDTIME 

NONSEQUENCED VALIDTIME FROM 
<x> TO <y> 

NONSEQUENCED VALIDTIME 

NONSEQUENCED VALIDTIME ON <x> NONSEQUENCED VALIDTIME 
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Temporal DDL 

As of version 1.9.3, Pandamator supports temporal DDL. 

Adding Validtime Support 

CREATE VALIDTIME 

Adds the infrastructure (cf. SQL Infrastructure). The file “AddTemporalSupport.sql” 

should be in the current directory. 

Refreshing the Validtime Support 

ALTER VALIDTIME 

Recreates all artifacts based on the current temporal metadata (cf. SQL Generation). It 

should be called once after any of the following statements have been called, because 

this operation is quite expensive, as it can create a huge SQL script. 

Declaring the Temporal Type of a Table 

ALTER TABLE <table name> ADD VALIDTIME(STATE) 

ALTER TABLE <table name> ADD VALIDTIME(EVENT) 

Declares a table as a temporal table with the specified temporal type. 

Undeclaring a Temporal Table 

ALTER TABLE <table name> DROP VALIDTIME 

Undeclares a table as a temporal table. 

Declaring a Validtime Constraint 

ALTER TABLE <table name> ADD VALIDTIME CONSTRAINT 
<constraint name> <constraint> 

Declares a validtime constraint, where <constraint> is one of the following: 

• CONTIGUOUS 

• PRIMARY KEY ( <columns>)  

• UNIQUE ( <columns>) 

• CONSTANT ( <columns>) 

• FOREIGN KEY ( <columns>) REFERENCES <primary table 
name> ON DELETE <delete rule> 

Undeclaring a Validtime Constraint 

ALTER TABLE <table name> DROP VALIDTIME CONSTRAINT 
<constraint name> 

Undeclares a validtime constraint. 
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QueryExpress, the Pandamator IDE 

Pandamator has extended an open-source IDE called QueryExpress by Joseph 

Albahari. Working with QueryExpress is no different that working with a usual IDE, 

so this chapter will mainly focus on the temporal additions. 

QueryExpress can connect to SQL Server and Oracle databases, as well as databases 

accessible through OLE-DB. Be aware that only SQL Server is currently supported by 

Pandamator. 

 

Figure 9 The QueryExpress connection dialog 

There is a drop-down control to select the current database. 

 

Figure 10 The database selection control 

A database which does not currently have temporal support can be identified because 

a button with a cross and the marking “vt” will be active (“Add ValidTime”). Pushing 

that button will have the effect of executing “CREATE VALIDTIME” (cf.Adding 

Validtime Support). 

 

Figure 11 An active "Add ValidTime" button 

When the database already has temporal support, the button will be inactive. 
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Figure 12 An inactive "Add ValidTime" button 

The object browser has been extended to show the temporal type and the validtime 

constraints of the tables and views. 

 

Figure 13 The object browser 

One can use the command window to execute arbitrary ATSQL. The message pane 

underneath reflects the outcome. 

 

Figure 14 Command execution 

Executing one or more queries presents the results in a series of tabs, which are either 

data grids or timelines. 

 

Figure 15Result tabs 
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Figure 16 Data grid 

 

 

Figure 17Timeline 
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Translating Temporal SQL 

Translating Temporal Queries into SQL92 

The prototype implementation of ATSQL (TimeDB) is available for download on the 

Internet, and is by definition the standard to compare with. The translation 

Pandamator does is not based in rephrasing temporal SQL using step-by-step 

applications of temporal algebra operators, like TimeDB does. Instead, it fragments 

the time axis into all spans defined by all endpoints of rows in the relations involved, 

runs the SQL query in each one, and coalesces the resulting relation. This amounts to 

running a separate snapshot query at every instant in time. Instants within the same 

span cannot be distinguished, because nothing changes during it, so running the query 

on the span instead of at each individual instant is an optimization. As a matter of 

convention, I will refer to the relations containing all pertinent instants and the 

resulting spans as SpanBoundaries and AllSpans correspondingly. 

For example, to treat a query that involves relation A and relation B (in the presence 

of a period of applicability defined by @start_date and @end_date, to make it a little 

harder), one would define the following CTEs. 

 
with SpanBoundaries 
as ( 
 select ValidFromDate thedate from A  
 union  
 select ValidToDate thedate from A  
 union  
 select ValidFromDate thedate from B 
 union  
 select ValidToDate thedate from B 
 union  
 select @start_date  
 union  
 select @end_date 
), 
AllSpans(ValidFromDate, ValidToDate) 
as ( 
 select a.thedate,b.thedate from SpanBoundaries a, 
SpanBoundaries b  
 where a.thedate < b.thedate  
 and not exists (select * from SpanBoundaries c where a.thedate 
< c.thedate and c.thedate < b.thedate) 

) 

Expressing the original query on each span of AllSpans is an operation that is defined 

syntactically, and is independent of the complexity of the query. In short, AllSpans is 

added to the source tables and all joins are modified to join to it as well. Since a row 

of AllSpans is always contained within or coincides with any row in any table 

involved, this is done with the simple expression p1.ValidFromDate <= 

span.ValidFromDate and span.ValidToDate <= p1.ValidToDate . 

For example, a query  

 validtime from @ValidFromDate to @ValidToDate 
 select p1.[id], null, p1.[val] from [dbo].[C] p1 
 inner join [dbo].[B] p2 on p1.[b_id] = p2.[id] 
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 inner join [dbo].[A] p3 on p2.[a_id] = p3.[id] 
and  p3.val < @val 

which joins tables A, B and C, will be transformed to 

 select p1.[id], null, 
p1.[val],span.ValidFromDate,span.ValidToDate from AllSpans span 
 inner join [dbo].[C] p1 on p1.ValidFromDate <= 
span.ValidFromDate and span.ValidToDate <= p1.ValidToDate 
 inner join [dbo].[B] p2 on p2.ValidFromDate <= 
span.ValidFromDate and span.ValidToDate <= p2.ValidToDate and 
p1.[b_id] = p2.[id] 
 inner join [dbo].[A] p3 on p3.ValidFromDate <= 
span.ValidFromDate and span.ValidToDate <= p3.ValidToDate and 
p2.[a_id] = p3.[id] 
 where @ValidFromDate <= span.ValidFromDate and span.ValidToDate 
<= @ValidToDate 
    and  p3.val < @val 

 

Naturally, the presence of CTEs, subqueries and aggregates, demands a little more 

effort than what is described here, but the important thing to retain is the central idea 

behind the transformation. This approach extends to aggregates, for example, if one 

takes care to add span.ValidFromDate to the grouping columns. 

Implementing Coalescing in SQL92 

Coalescing is an important operation to ensure a succinct representation of temporal 

data.  

Pandamator uses a recursive formulation of coalescing that has been found to scale 

well on more than 100,000 rows
3
, in contrast to the code found in Snodgrass. Column 

equality is implemented to cope with NULL values, for example l. col1 = f. col1 

AND (l. col2 = f. col2 or coalesce( l. col2, f. col2) is null) where 

column col1 is non-null whereas column col2 is nullable. 

with  
Coal(columns,ValidFromDate,ValidToDate) 
as ( 
 select columns, ValidFromDate, ValidToDate 
 from R p2 
 where not exists(select * from R p1  
  where p1.ValidToDate = p2.ValidFromDate 
  and p1 and p2 column equality 
 ) 
 
 union all 
 
 select p1 columns, p1.ValidFromDate, p2.ValidToDate 
 from Coal p1 
 inner join R p2 on p1.ValidToDate = p2.ValidFromDate 
  and p1 and p2 column equality 
 

                                                 
3
 A version that, curiously, performs slightly worse is: 
Coalesced(columns,ValidFromDate,ValidToDate) as (  
 select distinct p1 columns, p1.ValidFromDate, p1.ValidToDate from Coal p1  
 where not exists(select * from R p2 where p1.ValidToDate = p2.ValidFromDate 
  and p1 and p2 column equality) 
) 
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), 
Coalesced(columns,ValidFromDate,ValidToDate) 
as (  
 select p1 columns, p1.ValidFromDate, max(p1.ValidToDate) 
 from Coal p1  
 group by p1 columns, p1.ValidFromDate 
) 
select * from Coalesced 

Coalescing corresponds to replacing relation R with its coalesced equivalent. 

Pandamator does this in-place without making use of a temporary table, by means of 

the following mechanism. Rows that are first in a series of coalesced ones have their 

ValidToDate extended, and rows that were subsequent in the series end up being 

subsumed by the extended ones and are then deleted. 

with 
CoalescedSpans(columns,start_date,end_date) 
as ( 
 coalescing code 

) 
update R  
set ValidToDate = p2.ValidToDate 
from R p1 
inner join CoalescedSpans p2 
 on p1 and p2 column equality  
 and p1.ValidFromDate=p2.ValidFromDate and p1.ValidToDate < 
p2.ValidToDate; 
 
delete from R  
from R p1  
where exists( 
 select * from R p2  
 where p1 and p2 column equality 
 and p2.ValidFromDate < p1.ValidFromDate and p1.ValidToDate <= 
p2.ValidToDate 

); 

The meaning of a state relation is independent of whether it is coalesced or not. This 

notion is called “snapshot reducibility”. However, for reasons of parsimony and ease 

of use, Pandamator always coalesces state relations that are used either at top-level, or 

as subqueries in snapshot or non-sequenced queries. This enables one, for example, to 

write a query to find durations during which an attribute did not change might seem 

straightforward to formulate thus: 

with r1 as (validtime select x from R)  

nonsequenced validtime select x, ValidToDate-ValidFromDate from r1 

Unfortunately, coalescing is a complex operation that, when applied at the end of a 

complex generated query can literally freeze the RDBMS. Pandamator enables 

conditional inhibition of coalescing with the FULL directive before SELECT (subject 

to change). 

Translating Sequenced Queries into SQL92 

Sequenced queries, whether they are the main query or a subquery, are treated in the 

same manner. I will use the following query tree for my example, where queries are 

presented as rectangles marked with “T”, if they result in state relations, or “S”, if 

they result in snapshot relations. 
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Figure 18: Sample Query Tree for Translating Sequenced Queries 

First, the queries resulting in state relations are identified, along with their subqueries 

that also result in state relations, recursively. This identifies distinct query subtrees for 

further processing, like in the following sketch. 

 

Figure 19: Query Subtrees for Translating Sequenced Queries 

Three query subtrees, labeled 1, 2 and 3 are identified here. 

For each subtree, Pandamator will create a CTE for the root query and also create 

CTEs for the coalesced version of the resulting relation. The original root queries are 

replaced, at the point of use, with select * from Coalesced_T for each query 

subtree headed by T. See Appendix A: Query Transformation Example (Not 

Coalesced), and Appendix B: Query Transformation Example (Coalesced). 

Translating Temporal Deletes into SQL92 

Snodgrass (Snodgrass: Developing Time-Oriented Database Applications in SQL) 

describes a method to execute updates and deletes based on single-table queries and 

suggests a “case analysis on the interaction”  of periods from all tables involved when 

updates and deletes involve more tables. Unfortunately, this advice does not provide a 

concrete way to mechanize the process. I will describe, in the sequel, a way to 

describe temporal updates and deletes in a way that is independent of the number of 

tables involved in the associated query or its complexity. The underlying mechanism 

owes its inspiration to N. Lorentzos whose interval-extended SQL (IXSQL) was 

based semantically on operations that split and joined intervals at instants determined 

by the actual data in a table, to implement all necessary temporal algebra operators.  

DELETE is defined at minimum using a WHERE clause on a table (which, however, 

could mention other tables using subqueries), or by utilizing a full FROM clause 

containing join expressions. Either way, it is defined on top of a query that describes 

the primary key and the spans of the entities that should be deleted. I will refer to this 

query as DeletedSpans. The complementary relation of DeletedSpans with respect to 

the whole relation R is RetainedSpans. In other words, (DeletedSpans union 

RetainedSpans) ≡ R. Deletion amounts to replacing R by RetainedSpans. 



Pandamator 1.9.4 July 27, 2011 

32 

The canonical way of expressing DELETE on top of DeletedSpans (which will be 

chopped according to AllSpans, as shown in Translating Temporal Queries) would be 

as follows. Note that only primary key columns are actually used by the code, even 

though all columns are contained in the CTEs.  

Definition of SpanBoundaries, AllSpans & DeletedSpans, 

RetainedSpans(columns,start_date,end_date) 
as ( 
 select p1 columns,span.start_date,span.end_date from AllSpans 
span 
 inner join R p1 on p1.start_date <= span.start_date and 
span.end_date <= p1.end_date  
 where not exists ( 
  select * from DeletedSpans p2 
  where p1 pkey = p2 pkey and span.start_date=p2.start_date 
and span.end_date=p2.end_date 
 ) 
),  
CoalescedRetainedSpans(columns,start_date,end_date) 
as ( 
 coalescing code 

) 
select columns,start_date,end_date 
into #temp 
from CoalescedRetainedSpans; 
 
delete from R; 
 
insert into R(columns,start_date,end_date) 
select columns,start_date,end_date 
from #temp; 
 
drop table #temp; 

Pandamator employs an optimized version that needs less data to be moved to and 

from the temporary table. This is done by saving only retained spans of R resulting 

from chopping off a row in R, and saving markers to rows of R that must be deleted 

as a whole. Markers are distinguished by setting ValidToDate = ValidFromDate, 

which is invalid in a state relation.  

 
Definition of SpanBoundaries, AllSpans & DeletedSpans, 

RetainedSpans(columns, [val],ValidFromDate,ValidToDate) 
as ( 
 select p1 columns,span.ValidFromDate,span.ValidToDate from 
AllSpans span 
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and 
span.ValidToDate <= p1.ValidToDate  
 where not exists ( -- there is no DeletedSpan coinciding with 
it 
  select * from DeletedSpans p2 
  where p1 pkey = p2 pkey and 
span.ValidFromDate=p2.ValidFromDate and 
span.ValidToDate=p2.ValidToDate 
 ) and exists ( -- but there is a DeletedSpan overlapping the 
whole row 
  select * from DeletedSpans p2 
  where p1 pkey = p2 pkey and 
p1.ValidFromDate<p2.ValidToDate and p2.ValidFromDate<p1.ValidToDate 
 ) 
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), 
CoalescedRetainedSpans(columns,start_date,end_date) 
as ( 
 coalescing code 

) ,  
SavedSpans(columns,ValidFromDate,ValidToDate) 
as ( 
 select p1 columns,p1.ValidFromDate,p1.ValidToDate from 
CoalescedRetainedSpans p1 -- saved spans 
 union 
 select p1 columns,p1.ValidFromDate,p1.ValidFromDate from 
DeletedSpans p1 -- markers 
) 
select columns,ValidFromDate,ValidToDate 
into #temp 
from CoalescedRetainedSpans; 
 
-- Delete from R every row that overlaps with saved spans 
delete from R  
from R p1 
where exists( 
 select * from #temp p2 
 where p1 pkey = p2 pkey and p1.ValidFromDate<p2.ValidToDate and 
p2.ValidFromDate<p1.ValidToDate 
); 
 
--delete rows pointed to by #temp markers 
delete from R  
from R p1 
where exists( 
 select * from #temp p2 
 where p1 pkey = p2 pkey and p1.ValidFromDate=p2.ValidFromDate 
and p1.ValidFromDate=p2.ValidToDate 
); 
 
 
insert into columns,ValidFromDate,ValidToDate) 
select columns,ValidFromDate,ValidToDate 
from #temp 
where ValidFromDate<>ValidToDate; --bypass markers 
 
drop table #temp; 

Translating Temporal Updates into SQL92 

UPDATE is defined at minimum using a WHERE clause on a table (which, however, 

could mention other tables using subqueries), or by utilizing a full FROM clause 

containing join expressions. Either way, it is defined on top of a query that describes 

the primary key, the column values and the spans of the entities that should be the 

outcome. I will refer to this query as AlteredSpans. The complementary relation of 

AlteredSpans with respect to the whole relation R is RetainedSpans. In other words, 

(AlteredSpans union RetainedSpans) ≡ R. Update amounts to replacing R by 

RetainedSpans. 

The canonical way of expressing UPDATE on top of AlteredSpans is as follows. 

 
Definition of SpanBoundaries, AllSpans & AlteredSpans, 

RetainedSpans(columns,ValidFromDate,ValidToDate) 
as ( 
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 select p1 columns,span.ValidFromDate,span.ValidToDate from 
AllSpans span 
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and 
span.ValidToDate <= p1.ValidToDate  
 where not exists ( -- there is no AlteredSpan coinciding with 
it 
  select * from AlteredSpans p2 
  where p1 pkey = p2 pkey and 
span.ValidFromDate=p2.ValidFromDate and 
span.ValidToDate=p2.ValidToDate 
 ) 
), 
FinalSpans  
as ( 
  select * from AlteredSpans 
  union all 
  select * from RetainedSpans 
),   
CoalescedFinalSpans(columns,ValidFromDate,ValidToDate) 
as ( 
 coalescing code 

) 
select columns,start_date,end_date 
into #temp 
from CoalescedFinalSpans; 
 
delete from R; 
 
insert into R(columns,start_date,end_date) 
select columns,start_date,end_date 
from #temp; 
 
drop table #temp; 

Pandamator employs an optimized version that needs less data to be moved to and 

from the temporary table. This is done by saving only altered spans of R resulting 

from updating a portion of a row in R and retained spans that are the remaining 

portions. Consequently, only those rows in R that are affected need be deleted before 

the contents of the temporary table are inserted back into R. 

 
Definition of SpanBoundaries, AllSpans & AlteredSpans, 

RetainedSpans(columns, ValidFromDate, ValidToDate) 
as ( 
 select p1 columns, span.ValidFromDate, span.ValidToDate from 
AllSpans span 
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and 
span.ValidToDate <= p1.ValidToDate  
 where not exists ( -- there is no AlteredSpan coinciding with 
it 
  select * from AlteredSpans p2 
  where p1 pkey = p2 pkey and span.ValidFromDate = 
p2.ValidFromDate and span.ValidToDate = p2.ValidToDate 
 ) and exists ( -- but there is an AlteredSpan overlapping the 
whole row 
  select * from AlteredSpans p2 
  where p1 pkey = p2 pkey and p1.ValidFromDate < 
p2.ValidToDate and p2.ValidFromDate < p1.ValidToDate 
 ) 
), 
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FinalSpans  
as ( 
  select * from AlteredSpans 
  union all 
  select * from RetainedSpans 
),   
CoalescedFinalSpans(columns, ValidFromDate, ValidToDate) 
as ( 
 coalescing code 

) 
select columns, ValidFromDate, ValidToDate 
into #temp 
from CoalescedFinalSpans; 
 
-- Delete every row that overlaps with saved spans 
delete from R  
from R p1 
where exists( 
 select * from #temp p2 
 where p1 pkey = p2 pkey and p1.ValidFromDate < p2.ValidToDate 
and p2.ValidFromDate < p1.ValidToDate 
); 
 
insert into R(columns, ValidFromDate, ValidToDate) 
select columns,ValidFromDate,ValidToDate 
from #temp; 
 
drop table #temp; 
 

When UPDATE refers to a single table, Pandamator uses simpler code taken from 

Snodgrass. 
 
INSERT INTO R (columns, ValidFromDate, ValidToDate) 
SELECT columns, ValidFromDate, @ValidFromDate 
FROM R 
WHERE condition on table 
AND ValidFromDate < fromdate 
AND fromdate < ValidToDate; 
 
 
INSERT INTO R( columns, ValidFromDate, ValidToDate) 
SELECT columns, @ValidToDate, ValidToDate 
FROM R 
WHERE condition on table 
AND ValidFromDate < todate 
AND todate < ValidToDate; 
 
UPDATE R 
SET values 
WHERE condition on table 
AND ValidFromDate < todate 
AND fromdate < ValidToDate; 
 
UPDATE R 
SET ValidFromDate = fromdate 
WHERE condition on table 
AND ValidFromDate < fromdate 
AND fromdate < ValidToDate; 
 
UPDATE R 
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SET ValidToDate = @ValidToDate 
WHERE condition on table 
AND ValidFromDate < todate 
AND todate < ValidToDate; 
 
Call to coalescing code 
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Useful Non-Sequenced Idioms 

Why Sequenced Queries Are Not Enough 

Truth be told, ATSQL (and SQL2, its older sibling), provide a solution for just a 

single real problem in using temporal databases, which is sequenced operations.  

Unfortunately, the majority of useful queries one might think of after adopting the 

temporal point of view, are non-sequenced, which amounts to saying that no help is 

available for implementing them. 

I have collected here a number of useful non-sequenced idioms that I hope will 

provide some comfort in that area. Some of them might end up as language 

extensions, although I am not very eager to add isolated solutions to isolated 

problems. 

Event Statemachines 

Timestamped data that represent observations, gauge readings, invoices etc are very 

common in non-temporal databases in every application area. Sometimes a stream of 

such events is thought of as implying an associated succession of states, which is 

expressed as a state relation in a temporal database. A statemachine, they way it will 

be described here, is applicable only when the underlying events do not coincide. If 

they do, the logic to “serialize” the events and feed them, one-by-one, to the 

statemachine, will not work and will need to be extended. This property of the event 

relation is called being per-partition sequential, a partition in that context being the 

item collection corresponding to the same object surrogate (see terminology in Time-

varying data). 

Formulating the query that produces this state relation is cumbersome, but it looks 

something like the following.  

 
with 
AllInvoiceSpans(id,invoicetype,val,ValidFromDate,ValidToDate) 
as ( 
 select a.id,a.invoicetype,a.val,a.ValidOnDate,b.ValidOnDate 
from InvoiceEvents a,InvoiceEvents b  
 where a.ValidOnDate < b.ValidOnDate  
 and a.id = b.id 
 and not exists (select * from InvoiceEvents c where a.id = c.id 
and a.ValidOnDate < c.ValidOnDate and c.ValidOnDate < b.ValidOnDate) 
 
 union all 
 
 select a.id,a.invoicetype,a.val,a.ValidOnDate,'3000-01-01' from 
InvoiceEvents a 
 where not exists (select * from InvoiceEvents b where 
a.ValidOnDate < b.ValidOnDate and a.id = b.id) 
  
), 
States(id,state,val,ValidFromDate,ValidToDate) 
as ( 
 select id, 0, val, ValidFromDate, ValidToDate from 
AllInvoiceSpans a 
 where invoicetype = 100 
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 and not exists (select * from AllInvoiceSpans b where a.id = 
b.id and b.ValidToDate = a.ValidFromDate) 
 
 union all 
 
 select id, 1, val, ValidFromDate, ValidToDate from 
AllInvoiceSpans a 
 where invoicetype = 110 
 and not exists (select * from AllInvoiceSpans b where a.id = 
b.id and b.ValidToDate = a.ValidFromDate) 
 
 union all 
 
 select a.id, 10, a.val+b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 0 and b.invoicetype = 120 
 
 union all 
 
 select a.id, 11, a.val+b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 1 and b.invoicetype = 120 
 
 union all 
 
 select a.id, 14, a.val+b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 10 and b.invoicetype = 140 
 
 union all 
 
 select a.id, 13, a.val-b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 10 and b.invoicetype = 130 
 
 union all 
 
 select a.id, 24, a.val+b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 11 and b.invoicetype = 140 
 
 union all 
 
 select a.id, 23, a.val-b.val, b.ValidFromDate, b.ValidToDate 
from States a, AllInvoiceSpans b 
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and 
a.state = 11 and b.invoicetype = 130 
) 
select * from States 

It could be facilitated by introducing some appropriate syntax, like 

 
select validtime set from <someeventset> where <maincond> as ( 
 goto <s1> select <values...> where <cond> 
 goto <s2> select <values...> where <cond> 
from <s1> 
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 goto <s3> select <values...> where <cond> 
 goto <s4> select <values...> where <cond> 
from any 
 goto <s5> select <values...> where <cond> 
 goto <s6> select <values...> where <cond> 
  …  

) 

The point would be to produce SQL code like the own shown previously, given 

something like 

select validtime set from InvoiceEvents as ( 
 goto 0 select id, val where invoicetype = 100 
 goto 1 select id, val where invoicetype = 110 
from 0 
 goto 10 select id, old.val+val where invoicetype = 120 
from 1 
 goto 11 select id, old.val+val where invoicetype = 120 
from 10  
 goto 14 select id, old.val+val where invoicetype = 140 
 goto 13 select id, old.val-val where invoicetype = 130 
from 11  
 goto 24 select id, old.val+val where invoicetype = 140 
 goto 23 select id, old.val-val where invoicetype = 130 

) 

Such helper syntax, is under consideration for inclusion in Pandamator. 

As an example of a statemachine in action, consider the following event relation. 

Data Table 6: Event Relation to apply statemachine to 

id invoicetype val ValidOnDate 

1 100 3 2008-01-01 

1 120 0 2008-01-10 

1 140 3 2008-01-12 

2 110 4 2008-01-05 

2 120 0 2008-01-06 

2 130 4 2008-01-10 

Running the statemachine above produces the following state relation. 

Data Table 7: Event Statemachine results 

id state Val ValidFromDate ValidToDate 

1 0 1 2008-01-01 2008-01-10 

1 10 2 2008-01-10 2008-01-12 

1 14 2 2008-01-12 3000-01-01 

2 1 2 2008-01-05 2008-01-06 

2 11 1 2008-01-06 2008-01-10 

2 23 1 2008-01-10 3000-01-01 
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Status Transitions 

When using a state relation that implements a statemachine (for example, having a 

“status” column), either created out of an event relation, like before, or available 

directly, there is a feature of Pandamator that can help enforce the correct state 

transitions declaratively. 

One can create a view implementing an event relation that records the transitions 

(“status” values before and after), having a foreign key to a table holding the allowed 

such pairs. Referential integrity constraints will ensure that attempting to make a 

disallowed transition will be rejected. 

Fold Queries 

Fold queries are a class of non-sequenced queries that are formulated in a well-

structured manner and can formulated many problems that involve accumulation or 

integration over time. 

They are based on the fold higher-order functions commonly used in functional 

programming. An example can help illustrate the operation of fold. 

Given a sequence of values S=[s0, s1, s2, … sn], a function of two arguments f and a 

starting value a, we can define the following functions. 
 

fold_left(f, a, S) = f(…f( f(a, s0 ), s1), … sn) 

fold1_left(f, S) = f(… f( f(s0, s1), s2) … sn) 

fold_right(f, a, S) = f(s0, … f(sn-1, f(sn, a) )…) 

fold1_right(f, S) = f(s0, … f(sn-2, f(sn-1, sn) )…) 

 

The difference between the two variants is whether we supply an initial value or not 

(in the latter case the sequence cannot have less than two elements). 

Translating the same concept to a temporal relation, a fold query is a pairwise 

application of a function to successive states to perform some kind of accumulation. 

In order to account for gaps in the history, first we define the temporal complement of 

a state relation (a term I coined myself). A temporal complement is a relation that fills 

the gaps inside a non-contiguous history within a relation with null values for 

columns other than the primary key ones. Its definition is 

 select p1 key columns, p1 null non-key columns, p1.ValidToDate 
as ValidFromDate, p2.ValidFromDate as ValidToDate 
 from R p1 
 inner join R p2 on p1 pkey = p2 pkey 
 where p1.ValidToDate < p2.ValidFromDate 
 and not exists( 

select * from R p3  
where p1 pkey = p3 pkey  
and p1.ValidToDate < p3.ValidFromDate  
and p3.ValidFromDate < p2.ValidFromDate 

) 

Fold queries can be expressed easily as recursive queries over the union of a relation 

and its temporal complement. 
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An example of a fold1_left query is the following, that accumulates column val using 

addition, starting with value -2 and treating NULL as -3. 

with 
-- Temporal complement 
H_TC (id, b_id, val, ValidFromDate, ValidToDate) 
as ( 
 select p1.id as id, null as b_id, null as val, p1.ValidToDate 
as ValidFromDate, p2.ValidFromDate as ValidToDate 
 from H p1 
 inner join H p2 on p1.id=p2.id 
 where p1.ValidToDate < p2.ValidFromDate 
 and not exists(select * from H p3 where p3.id=p1.id and 
p1.ValidToDate < p3.ValidFromDate and p3.ValidFromDate < 
p2.ValidFromDate) 
), 
H_Full (id, b_id, val, ValidFromDate, ValidToDate) 
as ( 
 select id, b_id, val, ValidFromDate, ValidToDate from H 
 union all 
 select id, b_id, val, ValidFromDate, ValidToDate from H_TC 
), 
SampleFold (id, ret, ValidOnDate) 
as ( 
 select id, -2, ValidFromDate from H_Full p2 
 where not exists(select * from H_Full p1 where p1.id=p2.id and 
p1.ValidToDate <= p2.ValidFromDate) 
 
 union all 
 
 select p1.id, p1.ret+(CASE WHEN p2.val is null THEN -3 ELSE 
p2.val END), p2.ValidToDate 
 from SampleFold p1 
 inner join H_Full p2 on p1.id=p2.id and p1.ValidOnDate = 
p2.ValidFromDate 
) 

select id, ret, ValidOnDate from SampleFold order by id, ValidOnDate; 

This example uses an operation which is concerned purely with the succession of 

states and not their duration, but it is possible to use an operation which takes into 

account durations as well. In this manner we could implement integration, as well as 

any other non-standard aggregate operator. 

Valid-time Partitioning 

Valid-time partitioning is the partitioning of valid-time in spans over which we can 

compute useful aggregates (this is called Valid-time Cumulative Aggregation). When 

this is done using spans defined by a calendar, it is called Static Valid-time 

Partitioning.  

Joining with a schedule of the appropriate definition accomplishes this easily (cf. 

Scheduled entities). The partitioning spans could be overlapping, to calculate 

something based on a moving window. 

Event Succession Queries 

At times we need to query about patterns in an event stream. I call these queries event 

succession queries. The following is an example that queries how many times any of 

the following patterns appeared in a fictitious stream of invoices: 



Pandamator 1.9.4 July 27, 2011 

42 

• 100 120 (meaning 100 followed by 120) 

• 110 . 130 (meaning 110 followed by anything followed by 130) 
 
SuccessionSpans(id,combinedvalue,thedate) 
as ( 
 select a.id,a.[value]+b.[value],b.ValidOnDate from 
InvoiceEvents a, InvoiceEvents b  
 where a. ValidOnDate < b. ValidOnDate 
 and a.id = b.id 
 and a.invoicetype = 100 and b.invoicetype = 120 
 and not exists (select * from InvoiceEvents c where a.id = c.id 
and a. ValidOnDate < c. ValidOnDate and c. ValidOnDate < b. 
ValidOnDate) 
 
 union all 
 
 select a.id, a.[value]+b.[value]+c.[value], c. ValidOnDate from 
InvoiceEvents a,InvoiceEvents b,InvoiceEvents c 
 where a. ValidOnDate < b. ValidOnDate and b. ValidOnDate < c. 
ValidOnDate 
 and a.id = b.id and b.id = c.id 
 and a.invoicetype = 110 and c.invoicetype = 130 
 and not exists (select * from InvoiceEvents c1 where a.id = 
c1.id and a. ValidOnDate < c1. ValidOnDate and c1. ValidOnDate < b. 
ValidOnDate) 
 and not exists (select * from InvoiceEvents c2 where b.id = 
c2.id and b. ValidOnDate < c2. ValidOnDate and c2. ValidOnDate < c. 
ValidOnDate) 
  
) 

select count(*) cnt from SuccessionSpans 
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Branching Time (not yet incorporated) 

Introduction 

Branching time is an extension of valid time (which will be referred to as linear time 

in the sequel) that can be used to represent alternative time axes (timelines), 

branching freely off one another to create alternative represented realities. Although it 

sounds arcane, such a concept can be used whenever one needs to create alternative 

future data that nevertheless share a common past, like in a Web Content 

Management System where designers create alternative future versions of a page in 

advance. 

I could not find any treatment of branching time in the (limited) bibliography I 

studied, consequently I consider support of branching time in SQL to be a novel 

contribution of Pandamator, albeit experimental. 

Timeline Segments 

The basic elements for the representation of branching time are timeline segments. 

Timeline segments are time periods that optionally have a parent segment they branch 

away from, at a specific branching instant. 

 

 

Figure 20: Timeline Segment Branching 

Segment t3 branches off segment t1, and 

later segment t4 branches away from it. 

Independently of that, segment t2 

branches away from t1 at a later instant 

than does t3. 

Timelines 

The branching of timeline segments forms a proper tree, and the paths from the root to 

the leaves are timelines. As timelines are uniquely identified by the leaf segment, the 

same identifier will be used to refer to both. 

 

Figure 21: Timelines 

Timeline t4 is formed by portions of 

segments t1, t3 and all of t4. 
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Timeline segments would normally be valid forever, however one could specify a 

ValidToDate to denote that we need not represent any temporal entity on that timeline 

past that date. 

It is possible to form forests, rather than trees, if needs dictate so. It is also possible to 

form a forest of degenerate trees, each consisting of a single timeline, in which case 

the database will be simply partitioned in separate “realities”, each identified by a 

separate timeline identifier. In any of the aforementioned cases, the same logic holds 

and we need not distinguish special cases in our treatment. 

This representation of timelines is asymmetrical by design. I first experimented with 

abutting segments, a design that made for simpler representation and treatment. 

However, the operation of creating a new branch was a lot costlier in such a design, 

resulting in massive updates to existing data. I concluded that the guiding principle 

should be that existing data should be unperturbed by new data, particularly when 

new data are supposed to lie in alternative “realities”. 

Representation 

The only modification to a temporal table, in order to support branching time, is to 

add column ValidSegment, which holds a timeline segment id. Obviously a temporal 

constraint is needed to ensure that the period falls within the validity of the timeline. 

The referenced timeline segment actually annotates ValidToDate. The segment 

ValidFromDate belongs to can be computed if needed but it is irrelevant to queries 

and SQL generation as we focus on whole timelines. 

Timeline segments are held in the following table. 

create table timeline_segments ( 
 segment_id int not null primary key, 
 parent_segment_id int, 
 ValidFromDate datetime not null, 
 ValidToDate datetime not null 
); 

Timelines are defined by the following view. 

create view [dbo].[timelines] as 
with timelines (timeline_segment_id, segment_id, ValidFromDate, 
ValidToDate)  
as ( 
 -- All segments belong to a timeline of their own 
 select segment_id, segment_id, ValidFromDate, ValidToDate  
 from  timeline_segments p1 
 
 union all 
 
 -- All segments belong to the timelines of their branching 
segments, up to the branching instant 
 select p2.segment_id, p1.segment_id, p1.ValidFromDate, 
p2.ValidFromDate  
 from  timeline_segments p1, timeline_segments p2 
 where p1.segment_id = p2.parent_segment_id 
 
 union all 
 
 -- All segments belong to the timelines of all segments 
branching off their immediate branching segments, recursively 
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 select p2.segment_id, p1.segment_id, p1.ValidFromDate, 
p1.ValidToDate  
 from timelines p1, timeline_segments p2 
 where p1.timeline_segment_id = p2.parent_segment_id and 
p1.segment_id <> p2.parent_segment_id 
) 

select * from timelines 

Queries in branching time are slightly more complicated than queries in linear time, 

because all interacting periods must be constrained to belong to the same timeline. 

The following is a simple query on a table, in branching time. 

select t1.timeline_segment_id timeline,p1.*  
from tab p1 
inner join timelines t1  
on p1.ValidSegment=t1.segment_id and t1.ValidFromDate <= 
p1.ValidToDate and p1.ValidToDate <= t1.ValidToDate 

And the following is a query computing primary key violations in branching time. 

SELECT distinct t3.timeline_segment_id, I1.id 
id,dbo.LAST_INSTANT(I1.ValidFromDate,I2.ValidFromDate) 
ValidFromDate,dbo.FIRST_INSTANT(I1.ValidToDate,I2.ValidToDate) 
ValidToDate 
   FROM [dbo].[BA] I1 
   inner join [dbo].[BA] AS I2 
   ON I1.[id] = I2.[id] 
   AND (I1.ValidFromDate <> I2.ValidFromDate OR 
I1.ValidToDate <> I2.ValidToDate)  
   AND I1.ValidFromDate < I2.ValidToDate 
   AND I2.ValidFromDate < I1.ValidToDate 
   inner join timelines t3  
   on i1.ValidSegment=t3.segment_id and 
t3.ValidFromDate <= i1.ValidToDate and i1.ValidToDate <= 
t3.ValidToDate 
   inner join timelines t4  
   on i2.ValidSegment=t4.segment_id and 
t4.ValidFromDate <= i2.ValidToDate and i2.ValidToDate <= 
t4.ValidToDate 
   and t4.timeline_segment_id = t3.timeline_segment_id  

The modifications are limited to one extra join with view “timelines” per table, and 

the constraint that all timelines should coincide. 

Virtual Database per Timeline 

Like the representation of data in linear time can be viewed as a succinct way to 

model separate database snapshots, one per time instant, the representation of data in 

branching time can be viewed as a succinct way to model separate temporal 

databases, one per timeline. Tables in branching time can be thought of as 

specifications, and joining with view “timelines” actually produces the multitude of 

distinct versions of the data on the appropriate timelines. 

 



Pandamator 1.9.4 July 27, 2011 

46 

SQL Infrastructure 

A single SQL file, named AddTemporalSupport.sql, is meant to be run against an 

SQL Server Database to prepare for temporal support. Its contents are the following. 

Temporal Metadata 

A schema is created, called temporal_metadata. Inside it are created the four tables 

which are explained in the sequel. 

temporal_metadata.tables 

• table_schema 

• table_name 

• table_type (one of “EVENT”, “STATE”) 

temporal_metadata.table_constraints 

• table_schema 

• table_name 

• constraint_name 

• constraint_type (one of “PRIMARY KEY”, “FOREIGN KEY”, 

“CONTIGUOUS”, “UNIQUE”, “CONSTANT”) 

temporal_metadata.constraint_columns 

• table_schema 

• table_name 

• column_name 

• constraint_name 

• ordinal_position 

temporal_metadata.referential_constraints 

• foreign_table_schema 

• foreign_table_name 

• foreign_constraint_name 

• primary_table_schema 

• primary_table_name 

• primary_constraint_name 

• delete_rule (one of “CASCADE”, “RESTRICT”, “SET NULL”) 
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Pseudo-DDL 

Temporal metadata are populated by the following pseudo-DDL procedures. Contrary 

to plain SQL, views are allowed as well as base tables. 

TemporalDeclareTable 

Declares the table as one needing temporal support. Annotation columns must already 

exist in the table. 

Called as: exec TemporalDeclareTable <schema>, <table>, 
<table type> 

For example: exec TemporalDeclareTable ‘dbo’, ‘a’, ‘STATE’ 

TemporalUndeclareTable 

Undeclares the table from the temporal metadata. 

Called as: exec TemporalUndeclareTable <schema>, <table> 

For example: exec TemporalUndeclareTable ‘dbo’, ‘a’ 

TemporalDeclarePrimaryKey 

Declares a temporal primary key. An index on the columns will not be created 

automatically. Also, declaring a temporal primary key on an event table does not 

result in any constraint-checking code being generated. The programmer should 

declare a normal SQL PRIMARY KEY constraint on the same columns, as well. 

Called as: exec TemporalDeclarePrimaryKey <constraint name>, 
<schema>, <table>, <columns> 

Columns are written in a single string, delimited by ‘[‘ and ‘]’. 

For example: exec TemporalDeclarePrimaryKey ‘PK’, ‘dbo’, ‘a’, 
‘[col1][col2]’ 

Because columns defined as the result of functions are always nullable, there is a way 

to instruct TemporalDeclarePrimaryKey to not perform the check for nullable 

columns, by prefixing the column string with a ‘U’, as in ‘U[col1][col2]’. The 

responsibility for ensuring that the columns will never contain nulls, lies with the 

programmer. Should the column contain any nulls, the result of all generated SQL is 

unpredictable. 

TemporalDeclareUnique 

Declares a temporal UNIQUE constraint. An index on the columns will not be created 

automatically. 

Called as: exec TemporalDeclareUnique <constraint name>, 
<schema>, <table>, <columns> 

Columns are written in a single string, delimited by ‘[‘ and ‘]’. 

For example: exec TemporalDeclareUnique ‘a_unq’, ‘dbo’, ‘a’, 
‘[col1][col2]’ 
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TemporalDeclareConstant 

Declares a temporal CONSTANT constraint. An index on the columns will not be 

created automatically. 

Called as: exec TemporalDeclareConstant <constraint name>, 
<schema>, <table>, <columns> 

Columns are written in a single string, delimited by ‘[‘ and ‘]’. 

For example: exec TemporalDeclareConstant ‘a_cst’, ‘dbo’, 
‘a’, ‘[col1][col2]’ 

TemporalDeclareContiguousHistory 

Declares the table as having contiguous history. 

Called as: exec TemporalDeclareContiguousHistory <constraint 
name>, <schema>, <table> 

For example: exec TemporalDeclareContiguousHistory ‘CH’, 
‘dbo’, ‘a’ 

TemporalDeclareForeignKey 

Declares a foreign key. An index on the columns will not be created automatically. 

Called as: exec TemporalDeclareForeignKey <constraint name>, 
<foreign schema>, <foreign table>, <foreign columns>, 
<primary schema>, <primary table>, <delete rule> 

Columns are written in a single string, delimited by ‘[‘ and ‘]’. 

For example: exec TemporalDeclareForeignKey ‘FK’, ‘dbo’, ‘a’, 
‘[col1]’, ‘dbo’, ‘b’, ‘CASCADE’ 

TemporalUndeclareConstraint 

Undeclares a constraint by name.  

Called as: exec TemporalUndeclareConstraint <constraint 
name>, <schema>, <table> 

For example: exec TemporalUndeclareConstraint ‘PK’, ‘dbo’, 
‘a’ 

Scheduled entities 

Support for scheduled entities makes use of a temporal table named schedule_spec, 

where a periodic schedule is defined in a manner reminiscent of cron, using intervals 

in datetime attributes. 

Columns: 

• scheduleid 

• scheduledweekday_from, scheduledweekday_to 

• scheduleddate_from, scheduleddate_to 
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• scheduledmonth_from, scheduledmonth_to 

• scheduledyear_from, scheduledyear_to 

• scheduledhour_from, scheduledhour_to 

• scheduledminute_from, scheduledminute_to 

• duration_seconds 

 

Schedules defined in table schedule_spec are expressed as event relations by the view 

scheduled_event. 

Scheduled_event makes use of calendar and time-of-day tables that are also defined in 

the file. 

It adds the user-defined time columns OnDate of same value as ValidOnDate. It can 

be used as a tag when joining with state relations, in order to retain the scheduled 

event in the joined relation. Also, OnDate participates in the primary key of 

scheduled_event as a way to identify a specific event (e.g. the 8’o clock call). 

Inline table-valued function schedule_events_at performs the same job but without a 

need for the schedule to be stored in schedule_spec. 

For example, the following retrieves all Fridays that fall on the 13
th

 during 2010. 

 
SELECT ValidOnDate, datepart(weekday,ValidOnDate) FROM 
dbo.schedule_events_at ( 
   6 
  ,6 
  ,13 
  ,13 
  ,null 
  ,null 
  ,null 
  ,null 
  ,0 
  ,12 
  ,null 
  ,null 
  ,'2010-01-01' 
  ,'2011-01-01'); 
 

 

Schedules are expressed as state relations by the view scheduled_span. Scheduled 

entities can be formed by joining any non-temporal entity with scheduled_span, or by 

temporal-joining a temporal entity with it.  
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Figure 22: Entity scheduled using a Schedule 

In the picture, an Entity is scheduled 

using a Schedule, resulting in Result, a 

scheduled entity defined by the 

sequenced join of both 

 

Figure 23: Non-temporal Entity scheduled 

using a Schedule 

In the picture, a non-temporal Entity is 

scheduled using a Schedule, resulting in 

Result, a scheduled entity defined entirely 

by the Schedule 

 

Scheduled_span makes use of calendar and time-of-day tables that are also defined in 

the file. 

It adds user-defined time columns SpanningFromDate and SpanningToDate, of same 

value as ValidFromDate and ValidToDate. They can be used together as tags when 

joining with state or event relations, in order to retain the scheduled span in the joined 

relation. Also, SpanningFromDate participates in the primary key of scheduled_span 

as a way to identify a specific span (e.g. the 8’o clock shift). 

When they form consecutive spans, SpanningFromDate and SpanningToDate can be 

used as grouping columns in Valid-time Cumulative Aggregation (see “Valid-time 

Partitioning”). 

Inline table-valued function partition_at is used to easily form consecutive spans 

based on a schedule. For example, the following returns spans between all Fridays of 

2010. 

 
SELECT ValidFromDate,ValidToDate FROM dbo.partition_at ( 
   6 
  ,6 
  ,null 
  ,null 
  ,null 
  ,null 
  ,null 
  ,null 
  ,0 
  ,0 
  ,0 
  ,0 
  ,'2010-01-01' 
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  ,'2011-01-01'); 

SQL Generation 

A separate program, GenerationTemplates, interprets temporal metadata that are 

declared in the corresponding schema of your database, and produces an SQL script to 

run against the database. 

Current version needs SQL Server 2005 and runs as: GenerationTemplates 
<dbserver> <user> <password>. 

Beware that the generated script can be quite huge (tens of thousands of lines), 

depending on how long-winded are the dependence chains of the foreign key 

relationships. 

The same procedure should be followed every time there is any change in the schema 

or the referential constraints, after cleaning up the temporal metadata (cf. Metadata 

management 

Procedures dbo.DeclareTemporalMetadata and 

 dbo.UndeclareTemporalMetadata do exactly what their names imply. 

Cleaning up).  

Things to do beforehand 

Please note that all modifications to the schema, that are simple to do in SQL92, are 

not included in the generated SQL, namely: 

• Declaration of the special columns ValidFromDate, ValidToDate and 

ValidOnDate, of type ‘datetime’ 

• CHECK constraint which ensures that ValidFromDate < ValidToDate 

• PRIMARY KEY for event tables, which is a plain SQL92 PRIMARY KEY 

Primary key support 

For each primary key defined in state table <Schema>.<Table>, the following 

artifacts are produced: 

• View <Schema>.<Table>_PKViol, which returns primary key 

violations. 

• Procedure <Schema>.ChkPK_<Table>, which checks for primary key 

violations. In this, and every other checking procedure, care has been taken to 

produce meaningful error messages that report details about the primary key 

of the entity producing the error, as well as the offending period. 

• Trigger TR_PK_<Table>, which calls the procedure on every modification 

to the table. In the case of a view, a separate one is defined for each base table. 

Coalescing 

Coalescing refers to normalizing the data to use as few rows as is possible, by way of 

merging rows together. 

For every state table <Schema>.<Table> the following artifacts are produced: 
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• View <Schema>.Coal_<Table>, which returns a coalesced state relation. 

• Procedure <Schema>.Coalesce_<Table> which uses the view to update 

the table contents with coalesced ones. Not produced for a view. 

Contiguous History 

For each table <Schema>.<Table> which has a Contiguous History constraint, the 

following artifacts are produced: 

• View <Schema>.<Table>_CHViol, which returns contiguous history 

violations. 

• Procedure <Schema>.ChkCH_<Table>, which checks for contiguous 

history violations. 

• Trigger TR_CH_<Table>, which calls the procedure on every modification 

to the table. In the case of a view, a separate one is defined for each base table. 

Constant 

For each table <Schema>.<Table> which has a Constant constraint, the following 

artifacts are produced: 

• View <Schema>.<Table>_<ConName>Viol, which returns Constant 

violations. 

• Procedure <Schema>.Chk<ConName>_<Table>, which checks for 

Constant violations. 

• Trigger TR_<ConName>_<Table>, which calls the procedure on every 

modification to the table. In the case of a view, a separate one is defined for 

each base table. 

Unique 

For each table <Schema>.<Table> which has a Unique constraint, the following 

artifacts are produced: 

• View <Schema>.<Table>_<ConName>Viol, which returns Unique 

violations. 

• Procedure <Schema>.Chk<ConName>_<Table>, which checks for 

Unique violations. 

• Trigger TR_<ConName>_<Table>, which calls the procedure on every 

modification to the table. In the case of a view, a separate one is defined for 

each base table. 

Foreign Key 

For every foreign key defined from table <FSchema>.<FTable> to table 

<PSchema>.<PTable>, the following artifacts are produced: 

View <FSchema>.<FTable>_To_<PTable>_<FKName>, which reports 

foreign key violations (<FTable> where Not Exists <PTable>). 
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Procedure <FSchema>.Chk<FKName>_<FTable>_To_<PTable> which 

checks for foreign key violations. 

Trigger TR_<FKName>_<FTable>_To_<PTable> which calls the procedure on 

every modification to the foreign table. In the case of a view, a separate one of each is 

defined for each base table. 

Trigger FK_<FSchema>_To_<PSchema>_R which calls the procedure on every 

modification to the primary table. In the case of a view, a separate one of each is 

defined for each base table.  

Checking the integrity 

For every table <Schema>.<Table>, a procedure <Schema>.Chk_<Table> is 

defined that calls all integrity-checking procedures on that table. 

Also, a procedure called dbo.CheckAll does the same database-wide. 

Delete in the presence of foreign keys 

For each table <Schema>.<Table>, a procedure 

<Schema>.DelFrom_<Table> is defined, which deletes from a table honoring 

foreign key constraints recursively outwards from the given table. Current code makes 

use of a primary key value to identify what to delete from the table, but the code can 

be adapted easily to other kinds of conditions, even mentioning other tables. If the 

table is a non-updatable view, running it will raise an exception. 

When not run inside a transaction, it creates one and rolls it back in case of an 

exception.  

Update 

For each table <Schema>.<Table>, a procedure <Schema>.Upd_<Table> is 

defined, which deletes from a table based on a primary key value. When the table has 

a contiguous history, simpler SQL is used. If the table is a non-updatable view, 

running it will raise an exception. 

When not run inside a transaction, it creates one and rolls it back in case of an 

exception.  

Metadata management 

Procedures dbo.DeclareTemporalMetadata and 

 dbo.UndeclareTemporalMetadata do exactly what their names imply. 

Cleaning up 

Procedure dbo.CleanAll removes all database entities created by the generated 

script, except itself. 

Run-time support 

The run-time support is included in the same executable, Pandamator.dll, which must 

be referenced by the .Net code wishing to use it (use “Add Reference” in Visual 

Studio). 
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ReadMetadata 

In order to read the metadata from the database, one must create a connection string 

and call ReadMetadata: 

Metadata.TemporalMetadata metadata = 
Metadata.ReadMetadata(connString); 

The returned value (here assigned to variable tables_list) holds the metadata and 

will be passed to all the other functions. 

CreateSQLDeleteCascading 

Function CreateSQLDeleteCascading creates a statement block that will act on a 

table, specified by a schema name and a table name, and delete from it based on a 

condition, specified in SQL. The condition must not reference any other temporal 

table and must use the marker {0} as a table alias. This marker will be substituted as 

needed in the generated text. 

To execute this statement block, one must supply values for the parameters 

@ValidFromDate and @ValidToDate, which together form the deletion interval, and 

also for all parameters mentioned in the condition string. 

The statement block takes care of all delete rules invoked by the deletion, like the 

generated procedure DelFrom_<table>, which is in fact created using the same SQL 

generation mechanism. 

Example code in C# follows. 

 
string deleteSql = Templates.CreateSQLDeleteCascading(metadata, 
"dbo", "A", "{0}.val < @val"); 
 
SqlTransaction transaction = connection.BeginTransaction(); 
 
SqlCommand command = new SqlCommand(deleteSql, connection); 
 
command.Parameters.Add(new SqlParameter("@ValidFromDate", new        
DateTime(2008, 03, 10))); 
command.Parameters.Add(new SqlParameter("@ValidToDate", new   
DateTime(2008, 03, 20))); 
command.Parameters.Add(new SqlParameter("@val", 100)); 
command.Transaction = transaction; 
 
try 
{ 
  command.ExecuteNonQuery(); 
       transaction.Commit(); 
} 
catch (Exception e) 
{ 
       Console.WriteLine(e.Message); 
       transaction.Rollback(); 
} 
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CreateSQLUpdateNonKey 

Function CreateSQLUpdateNonKey creates a statement block that will act on a table, 

specified by a schema name and a table name, and update it based on a condition, 

specified in SQL, and an update map. The update map is a Dictionary having key-

value pairs for all table attributes to update and associated expressions, specified as 

strings. 

The condition and the update expressions must not reference any other temporal table 

and must use the marker {0} as a table alias. This marker will be substituted as 

needed in the generated text. 

To execute this statement block, one must supply values for the parameters 

@ValidFromDate and @ValidToDate, which together form the deletion interval, and 

also for all parameters mentioned in the condition string and the update expressions. 

The statement block works like the generated procedure Upd_<table>, which is in 

fact created using the same SQL generation mechanism. 

Example code in C# follows. 

 
Dictionary<string, string> strings = new Dictionary<string, 
string>(); 
 
strings.Add("val", "{0}.val + 5"); 
 
string updateSql = Templates.CreateSQLUpdateNonKey(metadata, "dbo", 
"A", strings, "{0}.val > 100"); 
 
SqlTransaction transaction = connection.BeginTransaction(); 
 
SqlCommand command = new SqlCommand(updateSql, connection); 
 
command.Parameters.Add(new SqlParameter("@ValidFromDate", new 
DateTime(2008, 03, 10))); 
command.Parameters.Add(new SqlParameter("@ValidToDate", new 
DateTime(2008, 03, 11))); 
command.Transaction = transaction; 
 
try 
{ 
  command.ExecuteNonQuery(); 
       transaction.Commit(); 
} 
catch (Exception e) 
{ 
       Console.WriteLine(e.Message); 
       transaction.Rollback(); 
} 

 

CreateCoalescingCTEs 

Function CreateCoalescingCTEs creates a statement fragment with CTEs that 

define a coalesced relation, whose name is provided by the programmer, on a subset 

of a table’s columns, using the recursive coalescing code described earlier. 

Optionally, one can provide a filtering condition. This fragment can then be 
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prepended to a statement using the coalesced relation, like select * from R , or 
select a, b, min(ValidToDate-ValidFromDate) from R into 

#temp group by a, b. 

 

Using Temporal SQL (experimental) 

Function make_sql92_from_temporal creates SQL2 given a statement in ATSQL as 

defined in this text. As of this time, only SELECT statements are supported, and the 

support is experimental. Various restrictions apply, such as lack of support for 

sequenced subqueries inside non-sequenced ones. 

Example code in C# follows. 

var sql92_query = Transform.make_sql92_from_temporal(metadata, 
atsqlcode); 
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Description of test data and test execution 

Test data consist of a number of state and event tables linked by Foreign Key 

relationships with various ON DELETE rules. An auxiliary program, 

ABCTimelineVizualizer, uses a Simile Timeline widget inside an HTML page to help 

visualize the data. Although I have tried to manipulate the results in order to be 

presented in the most useful manner, you will notice that the results are sometimes 

bizarre-looking. 

Sample “A, B, C” data 

The following graph illustrates these relationships. Tables “D”, “E” and “F” are event 

tables. 

A

B

G
C H

D E
F

CASCADE

CASCADE

CASCADE

SET NULL

SET NULL

RESTRICT

RESTRICT

 

Figure 24: FK relationships of Sample "A, B, C" date 

The following chart illustrates the sample data. 
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Figure 25: Chart of "A, B, C" Sample Data 

The schema is created by Sample-ABC-schema.sql and the data insertion/re-insertion 

script is Sample-ABC-data.sql. 

Calling the deletion procedure inside a transaction 

We will call DelFrom_A with various arguments in order to attempt to delete A and 

verify the delete rules of the foreign keys that will be invoked. 

DECLARE @RC int; 
DECLARE @ValidFromDate datetime; 
DECLARE @ValidToDate datetime; 
DECLARE @id int; 
 
set @ValidFromDate='2008-01-13'; 
set @ValidToDate='2008-03-10'; 
set @id=1; 
set @RC = 0 
 
begin transaction; 
 
begin try; 
EXECUTE [Temporal2].[dbo].[DelFrom_A]  
   @ValidFromDate 
  ,@ValidToDate 
  ,@id; 
end try; 
 
begin catch; 
set @RC = -1; 
end catch; 
 
if @RC = 0 
commit 
else 
rollback; 

In order to recover from failures, the conditional statement ensures the rollback of the 

transaction. 
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RESTRICT from D to C and from G to B 

Trying to delete A from Jan 13
th

 to March 20
th

, the RESTRICT delete rule from D to 

C takes over and prohibits this update. 
 
Msg 50000, Level 16, State 2, Procedure DelFrom_A, Line 66 
Transaction violates RESTRICT delete rule for foreign key from dbo.D to C while 
deleting from dbo.A, e.g. id=1 ValidOnDate="Mar 12 2008 12:00AM" 

The presence of a D event on March 12
th

 rolled back the whole operation. One can 

verify that no data have been modified. 

Trying to delete up to March 10
th

 avoids D, but stumbles on G from February 10
th 

to 

March 1
st
. 

Msg 50000, Level 16, State 2, Procedure DelFrom_A, Line 325 
Transaction violates RESTRICT delete rule for foreign key from dbo.G to B while 
deleting from dbo.A, e.g. id=1 ValidFromDate="Feb 10 2008 12:00AM" ValidToDate="Mar  1 
2008 12:00AM" 

The reason that D is tested before G, is that the tree traversal of the foreign key 

relationships happens in the particular order. 

CASCADE to B, C and E 

Deleting from May 16
th

 to July 20
th

 avoids the objects that restrict deletion. 

 

Figure 26: Cascade in "A, B, C" Sample Data 

As you can see, B, C and E are deleted according to the CASCADE delete rule. 

SET NULL on H and on F 

Deleting A from January 4
th

 to January 8
th

, cascades to B and  SETs NULL on H. 
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Figure 27: Set Null in "A, B, C" Sample Data (states) 

The H that is shown out of place has a null foreign key to B. 

Finally, in order to test SET NULL on F events, we will call DelFrom_C from April 

5
th

 to April 15
th

. 

 

Figure 28: Set Null in "A, B, C" Sample Data (events) 

The F that is shown out of place has a null foreign key to C. 
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Appendix A: Query Transformation Example (Not 
Coalesced) 

The query that is transformed, is the following, where “a”, “b” and “c” are all state 

relations. Notice the “keyword” FULL that instrau 
 
FULL VALIDTIME 
SELECT b.id,a.value 
FROM b 
INNER JOIN a ON b.a_id=a.id 
WHERE not exists(SELECT * FROM c WHERE c.value<a.value) 
 

The SQL92 query, that results from the transformation, is the following. Note that 

legible identation and bracketing are not yet very high in the priority list… 
 
 
WITH spanboundaries(TheDate) AS ( 
(SELECT ValidFromDate AS TheDate 
FROM b) 
union 
((SELECT ValidToDate AS TheDate 
FROM b) 
union 
((SELECT ValidFromDate AS TheDate 
FROM a) 
union 
((SELECT ValidToDate AS TheDate 
FROM a) 
union 
((SELECT ValidFromDate AS TheDate 
FROM c) 
union 
(SELECT ValidToDate AS TheDate 
FROM c))))) 
), 
spans(ValidFromDate,ValidToDate) AS ( 
SELECT a.TheDate AS ValidFromDate,b.TheDate AS ValidToDate 
FROM spanboundaries AS a 
INNER JOIN spanboundaries AS b ON a.TheDate<b.TheDate and not 
exists(SELECT * 
FROM spanboundaries AS c 
WHERE a.TheDate<c.TheDate and c.TheDate<b.TheDate) 
) 
SELECT b.id AS t0,a.value AS t1 
FROM spans 
INNER JOIN b ON b.ValidFromDate<=spans.ValidFromDate and 
spans.ValidToDate<=b.ValidToDate 
INNER JOIN a ON(b.a_id=a.id)and(a.ValidFromDate<=spans.ValidFromDate 
and spans.ValidToDate<=a.ValidToDate) 
WHERE not exists(SELECT * 
FROM c 
WHERE(c.value<a.value)and(c.ValidFromDate<=spans.ValidFromDate and 
spans.ValidToDate<=c.ValidToDate)) 
ORDER BY ValidFromDate,ValidToDate; 
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Appendix B: Query Transformation Example 
(Coalesced) 

The query that is transformed, is the following, where “a”, “b” and “c” are all state 

relations. 

 
VALIDTIME 
SELECT b.id,a.value 
FROM b 
INNER JOIN a ON b.a_id=a.id 
WHERE not exists(SELECT * FROM c WHERE c.value<a.value) 
 

The SQL92 query, that results from the transformation, is the following.  
 
WITH spanboundaries(TheDate) AS ( 
(SELECT ValidFromDate AS TheDate 
FROM b) 
union 
((SELECT ValidToDate AS TheDate 
FROM b) 
union 
((SELECT ValidFromDate AS TheDate 
FROM a) 
union 
((SELECT ValidToDate AS TheDate 
FROM a) 
union 
((SELECT ValidFromDate AS TheDate 
FROM c) 
union 
(SELECT ValidToDate AS TheDate 
FROM c))))) 
), 
spans(ValidFromDate,ValidToDate) AS ( 
SELECT a.TheDate AS ValidFromDate,b.TheDate AS ValidToDate 
FROM spanboundaries AS a 
INNER JOIN spanboundaries AS b ON a.TheDate<b.TheDate and not 
exists(SELECT * 
FROM spanboundaries AS c 
WHERE a.TheDate<c.TheDate and c.TheDate<b.TheDate) 
), 
R(t0,t1,ValidFromDate,ValidToDate) AS ( 
SELECT b.id AS t0,a.value AS t1 
FROM spans 
INNER JOIN b ON b.ValidFromDate<=spans.ValidFromDate and 
spans.ValidToDate<=b.ValidToDate 
INNER JOIN a ON(b.a_id=a.id)and(a.ValidFromDate<=spans.ValidFromDate 
and spans.ValidToDate<=a.ValidToDate) 
WHERE not exists(SELECT * 
FROM c 
WHERE(c.value<a.value)and(c.ValidFromDate<=spans.ValidFromDate and 
spans.ValidToDate<=c.ValidToDate)) 
), 
Coal(t0,t1,ValidFromDate,ValidToDate) AS ( 
(SELECT p2.t0 AS t0,p2.t1 AS t1 
FROM Coal AS p1 
WHERE not exists(SELECT R.* 
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FROM R AS p1 
WHERE(p1.t0=p2.t0 or coalesce(p1.t0,p2.t0) is null)and(p1.t1=p2.t1 or 
coalesce(p1.t1,p2.t1) is null)and p1.ValidToDate = p2.ValidFromDate 
GROUP BY t0,t1,ValidFromDate) 
GROUP BY t0,t1,ValidFromDate) 
union 
(SELECT p2.t0 AS t0,p2.t1 AS t1 
FROM R AS p1 
INNER JOIN R AS p2 ON p1.ValidToDate = p2.ValidFromDate 
and(p1.t0=p2.t0 or coalesce(p1.t0,p2.t0) is null)and(p1.t1=p2.t1 or 
coalesce(p1.t1,p2.t1) is null)) 
), 
Coalesced(t0,t1,ValidFromDate,ValidToDate) AS ( 
SELECT p1.t0 AS t0,p1.t1 AS t1 
FROM R AS Coal 
GROUP BY t0,t1,ValidFromDate 
) 
SELECT * 
FROM Coalesced; 
 


