
Pandamator 1.9.4 July 27, 2011

1

Temporal Databases for Mere Mortals

Dimitrios Souflis

dsouflis@acm.org

Pandamator 1.9.4 July 27, 2011

2

Pandamator (ancient Greek for all-subduing, an adjective commonly attached to

time), is an open-source project aiming to enable handling of temporal databases

using common RDBMSs lacking temporal support. It consists of:

• Predetermined decisions as to what kinds of temporal data can be

accommodated and their representation in SQL

• Definitions of tables, views, functions and stored procedures that together

provide a supporting infrastructure for defining and using temporal tables

• An SQL generator that generates triggers for maintaining temporal referential

integrity and other procedural code

• Run-time support to create temporal UPDATE and DELETE scripts from

within user programs

• A middleware that translates temporal SQL to regular SQL (unfinished)

Pandamator does not require a thorough understanding of temporal databases, but its

benefits are not automatic either. Using a temporal database, even with the help of

Pandamator, is an order of magnitude more difficult that using a non-temporal one.

As such, it should be a conscious decision. However, the reason I created Pandamator,

is that it is often a decision that has already been taken by necessity, since temporal

data are almost ubiquitous. In that case, it is better to do it the correct way rather than

improvise.

In its current incarnation, Pandamator works with Microsoft SQL Server.

Pandamator 1.9.4 July 27, 2011

3

Contents

Pandamator Cheat Sheet ... 9

Intended Audience ... 10

Temporal Notions .. 11

What are temporal data .. 11

Dimensions of time .. 11

Time-varying data .. 11

Timestamped data .. 12

User-defined time... 13

Explicit and implicit data ... 13

Now and Forever.. 14

Snapshot at a specific instant ... 14

Query at each instant (sequenced query) ... 15

Query across time (non-sequenced query) ... 15

Coalescing .. 16

Integrity .. 16

Primary Key and Unique ... 16

Foreign Key ... 17

On Delete Cascade ... 17

On Delete Set Null ... 17

On Delete Restrict .. 18

Constant ... 18

Contiguous History .. 18

Specialized Temporal Relations .. 19

Temporal SQL (ATSQL) ... 20

Temporal Type of a Relation ... 20

Temporal Statement Modifiers .. 21

Inheritance of Temporal Statement Modifiers ... 22

Temporal DDL ... 24

Adding Validtime Support ... 24

Refreshing the Validtime Support ... 24

Declaring the Temporal Type of a Table ... 24

Undeclaring a Temporal Table .. 24

Declaring a Validtime Constraint .. 24

Undeclaring a Validtime Constraint .. 24

Pandamator 1.9.4 July 27, 2011

4

QueryExpress, the Pandamator IDE .. 25

Translating Temporal SQL .. 28

Translating Temporal Queries into SQL92 .. 28

Implementing Coalescing in SQL92 .. 29

Translating Sequenced Queries into SQL92 .. 30

Translating Temporal Deletes into SQL92 .. 31

Translating Temporal Updates into SQL92 ... 33

Useful Non-Sequenced Idioms .. 37

Why Sequenced Queries Are Not Enough... 37

Event Statemachines .. 37

Status Transitions ... 40

Fold Queries ... 40

Valid-time Partitioning .. 41

Event Succession Queries .. 41

Branching Time (not yet incorporated).. 43

Introduction .. 43

Timeline Segments... 43

Timelines.. 43

Representation.. 44

Virtual Database per Timeline ... 45

SQL Infrastructure ... 46

Temporal Metadata .. 46

temporal_metadata.tables... 46

temporal_metadata.table_constraints ... 46

temporal_metadata.constraint_columns ... 46

temporal_metadata.referential_constraints .. 46

Pseudo-DDL .. 47

TemporalDeclareTable .. 47

TemporalUndeclareTable .. 47

TemporalDeclarePrimaryKey .. 47

TemporalDeclareUnique .. 47

TemporalDeclareConstant ... 48

TemporalDeclareContiguousHistory ... 48

TemporalDeclareForeignKey .. 48

TemporalUndeclareConstraint ... 48

Pandamator 1.9.4 July 27, 2011

5

Scheduled entities .. 48

SQL Generation ... 51

Things to do beforehand .. 51

Primary key support ... 51

Coalescing .. 51

Contiguous History .. 52

Constant ... 52

Unique .. 52

Foreign Key ... 52

Checking the integrity .. 53

Delete in the presence of foreign keys ... 53

Update .. 53

Metadata management ... 53

Cleaning up .. 53

Run-time support ... 53

ReadMetadata .. 54

CreateSQLDeleteCascading .. 54

CreateSQLUpdateNonKey .. 55

CreateCoalescingCTEs .. 55

Using Temporal SQL (experimental) .. 56

Description of test data and test execution .. 57

Sample “A, B, C” data ... 57

Calling the deletion procedure inside a transaction ... 58

RESTRICT from D to C and from G to B ... 59

CASCADE to B, C and E .. 59

SET NULL on H and on F ... 59

References .. 61

Lorentzos.. 61

Jensen Thesis ... 61

Snodgrass: Developing Time-Oriented Database Applications in SQL 61

Andreas Steiner Thesis .. 61

TimeDB.. 61

Michael Boehlen Thesis ... 61

Consensus Glossary of Temporal Database Concepts – February 1998 Version 61

SIMILE Timeline ... 61

Pandamator 1.9.4 July 27, 2011

6

Teradata Temporal Option ... 61

Appendix A: Query Transformation Example (Not Coalesced) 62

Appendix B: Query Transformation Example (Coalesced) 63

Pandamator 1.9.4 July 27, 2011

7

Figures

Figure 1: Bitemporal Annotation Schematic ... 11

Figure 2: Snapshots s1, s2, s3 etc. ... 14

Figure 3: Primary Key Violation example ... 17

Figure 4: Foreign key violation example ... 17

Figure 5: On Delete Cascade ... 17

Figure 6: On Delete Set Null ... 18

Figure 7: On Delete Restrict .. 18

Figure 8: Contiguous History violation example ... 19

Figure 9 The QueryExpress connection dialog .. 25

Figure 10 The database selection control... 25

Figure 11 An active "Add ValidTime" button ... 25

Figure 12 An inactive "Add ValidTime" button .. 26

Figure 13 The object browser .. 26

Figure 14 Command execution .. 26

Figure 15Result tabs .. 26

Figure 16 Data grid .. 27

Figure 17Timeline .. 27

Figure 9: Sample Query Tree for Translating Sequenced Queries 31

Figure 10: Query Subtrees for Translating Sequenced Queries 31

Figure 11: Timeline Segment Branching ... 43

Figure 12: Timelines .. 43

Figure 13: Entity scheduled using a Schedule ... 50

Figure 14: Non-temporal Entity scheduled using a Schedule 50

Figure 15: FK relationships of Sample "A, B, C" date .. 57

Figure 16: Chart of "A, B, C" Sample Data ... 58

Figure 17: Cascade in "A, B, C" Sample Data .. 59

Figure 18: Set Null in "A, B, C" Sample Data (states) .. 60

Figure 19: Set Null in "A, B, C" Sample Data (events) ... 60

Pandamator 1.9.4 July 27, 2011

8

Tables

Table 1: Temporal Type of a Pairwise Join... 20

Table 2: Temporal Statement Modifier effect on SELECT 21

Table 3: Temporal Statement Modifier effect on DELETE/UPDATE 21

Table 4: Temporal Statement Modifier effect on INSERT 22

Table 5: Inherited Temporal Statement Modifier .. 23

Data Tables

Data Table 1: Example of a state relation ... 12

Data Table 2: Example of an event relation .. 13

Data Table 3: Snapshot of the example state relation .. 14

Data Table 4: Example of a sequenced query ... 15

Data Table 5: Example of a sequenced subquery of a non-sequenced query 15

Data Table 6: Event Relation to apply statemachine to ... 39

Data Table 7: Event Statemachine results ... 39

Pandamator 1.9.4 July 27, 2011

9

Pandamator Cheat Sheet

Using Pandamator consists of the following steps:

1. Prepare the database

Run AddTemporalSupport.sql to define the metadata tables and other

supporting SQL (cf.Adding Validtime Support).

2. Prepare your schema

Add the appropriate timestamp columns to your temporal-to-be tables

(cf. Time-varying data, Timestamped data).

3. Declare temporal annotations on your schema

Declare the temporal type of tables and all necessary integrity

constraints (cf.Declaring a Validtime Constraint).

4. Generate SQL for integrity constraints

Generate and run the necessary SQL to create views, procedures and

triggers necessary to enforce the integrity constraints (cf.Refreshing

the Validtime Support).

5. Create temporal-aware SQL in your code

Run-time support for temporal DML is provided in two ways: specialized

calls for code generation of DELETE and UPDATE (cf.

CreateSQLDeleteCascading, CreateSQLUpdateNonKey), and code

transformation from temporal SQL (ATSQL) to SQL92 (cf. Using

Temporal SQL (experimental)).

Pandamator 1.9.4 July 27, 2011

10

Intended Audience

This text was written to accompany Pandamator, an open-source project that helps

programmers work with temporal databases in the absense of such support from the

RDBMSs. Because working with temporal data is not usually taught and not usually

practiced, this text presents all relevant notions without presupposing anything more

than knowledge of SQL. It was written with the professional programmer in mind.

The field of temporal database research is vast and old, but has not found its way into

the mainstream yet. This is unfortunate, as we are using temporal data here and now,

and doing so in an ad-hoc and mostly wrong manner. You won’t find raw science in

this text, although I present links to free information you can start your own research

from, and academic sources can provide you with many more. This text contains

distilled knowledge only, and often I do not sidetrack in order to present alternative

views or solutions, in the interest of parsimony. So, if you are a scientist in this

domain, you will probably not find anything original in this text, but it might still be

of interest as the practitioner’s view on the subject.

Pandamator 1.9.4 July 27, 2011

11

Temporal Notions

What are temporal data

Temporal data are often characterized as data that vary with time (state relations, as

you will see below), for example when we need to track all modifications of the

attributes of an entity, or when we need to plan accommodations for hotel rooms in

advance. I take a slightly broader view than that, encompassing also simple

timestamped data (event relations, as you will see below), usually downplayed in the

field of temporal databases (for example, SQL2 and ATSQL do not mention them at

all). Temporal data exist, that are neither state nor event relations, but they can always

be transformed to one or the other in order to become amenable to proper temporal

treatment.

Plain relations, like the ones in conventional databases, are called snapshot relations.

Dimensions of time

There are at least two dimensions of time that are usually employed in temporal

databases, usually called valid time and transaction time. The valid time of some

information marks when that information is supposed to hold in real life. In that sense,

valid time in the past signifies the recorded past and valid time in the future signifies

information that does not actually exist yet, but we know it is scheduled to. The

transaction time of some information marks when this information was included in the

database. As such, it records the history of modifications of a database. Blending the

two dimensions, we have bitemporal databases that record the history of

modifications of a database that records time-varying information.

These two dimensions of time are regarded as orthogonal, which they are, but there is

a subtle difference between them. A piece of valid-time temporal information can be

regarded as the annotation of some piece of non-temporal data with the corresponding

valid time. The valid time characterizes the information. A piece of transaction-time

temporal information, on the other hand, is some piece of information (temporal or

not), annotated with a transaction time. In the case of bi-temporal data, the transaction

time annotates the valid time, not the other way around.

Figure 1: Bitemporal Annotation Schematic

Pandamator currently supports only the valid time dimension.

Time-varying data

Data varying with time will be described by rows annotated with a time period,

represented in SQL by two datetime columns, namely ValidFromDate and

ValidToDate. Together, they record a Closed-Open interval in the valid time

dimension, meaning that the associated row is valid at any time between

Pandamator 1.9.4 July 27, 2011

12

ValidFromDate inclusive and ValidToDate exclusive. Closed-open intervals can be

chained back-to-back to cover longer periods. To be frank, using closed-closed

intervals would allow a uniform representation that could be used for both state and

event data, but chaining closed-closed intervals would necessitate dealing with the

granularity of time in an RDBMS and how to form such intervals. This is a topic best

avoided since the established RDBMSs have wildly ad-hoc behavior in that domain
1
.

Data sets of time-varying data will be called state sets or state relations, as they

record distinct states of the world at different instants of time. For reasons of

parsimony, state relations that are persisted in tables or returned to the user (as

opposed to intermediate results of operations) will have the extra property of being

coalesced, meaning that adjacent time spans are merged when they contain the same

attribute values. Being coalesced or not does not alter the meaning of a state relation,

though.

Individual rows in a state relation are called temporal items, and identifiers of the

modeled objects are called object surrogates. The set of all temporal items describing

the lifetime of a modeled object is called a life-line or a time-sequence (in which case

a whole relation is called a time-sequence collection).

Let’s look at a first minimal example of a state relation.

Data Table 1: Example of a state relation

id (PK) val ValidFromDate ValidToDate

1 1 2008-01-01 2008-01-10

1 2 2008-01-10 2008-01-20

1 1 2008-02-01 2008-02-10

2 1 2008-01-15 2008-02-25

This relation describes the lifetime of two entities (as defined by the “id” primary

key). The entity with id=1 had a “val” attribute of value 1 from January 1
st
 to January

10
th

 (exclusive) and from February 1
st
 to February 10

th
 (exclusive), and a “val”

attribute of value 2 from January 10
th

 to January 20
th

 (exclusive). The entity with id=2

had a “val” attribute of value 1 from January 15
th

 to February 25
th

 (exclusive).

We are always operating under a “closed-world assumption”, so the entity with id=1

is supposed to not exist at all before January 1
st
, during January 20

th
 and February 1

st
,

and after February 10
th

. The entity with id=2 is supposed to not exist at all before

January 15
th

 and after February 25
th

.

Timestamped data

Timestamped data will be described by rows annotated with a timestamp, represented

in SQL by a datetime column named ValidOnDate. Data sets of timestamped data will

be called event sets or event relations, as they record distinct events in time.

1
 For example, Microsoft SQL Server offers a granularity of 1/300

th
 of a second and the smallest

increments / decrements it allows are milleseconds but rounded approximately to 3 ms (1/300
th

 of a

second). Oracle offers a configurable fractional second granularity of up to 1 nano-second and allows

arithmetic using the INTERVAL datatype with fractional seconds.

Pandamator 1.9.4 July 27, 2011

13

Like I said, event relations are often not given any attention. I believe this is wrong,

and these are my reasons. For one thing, such data are very common right now in all

application domains and the need they fulfill will not go away after the adoption of

temporal databases. They represent discrete events of the modeled reality,

observations, readings from sensors and other similar data. In addition to their

inherent value, they are useful even when the temporal data we intend to use are state

relations, because many useful queries are naturally formulated in terms of event

relations. For example, “At what instants did something happen?” (a transition

between two states, the beginning or ending of something), “How many times did

something happen?”.

Event relations can be used to represent transitions between states, and state relations

can be used to represent what holds between events. In this manner, event relations

and state relations are complementary views of reality and switching between these

views can be very useful. I call the operation of producing event timestamps from a

state relation, “demarcation”, and the converse operation of producing indivisible

spans from an event relation, “spanning”.

Let’s look at a first minimal example of an event relation.

Data Table 2: Example of an event relation

id (PK) val ValidOnDate

1 1 2008-01-01

2 2 2008-01-10

3 2 2008-02-01

4 1 2008-02-15

This relation describes four events that happened on the dates January 1
st
, January

10
th

, February 1
st
 and February 15

th
.

Although event relations are represented differently than state relations, Pandamator

operates on them as if they were state relations with ValidFromDate=ValidOnDate

and ValidToDate=ValidOnDate + dt, where dt is an arbitrarily short duration that

never needs to be specified explicitly, as it is factored out of all computations. It does

not correspond to the granularity of the database, it’s just supposed to be small

enough so that for every time T that could appear in the data, there is no time T’ that

could appear in the data, so that T ≤ T’ ≤ T+dt. So, event relations are used as state

relations that can only be valid at a single moment, of those moments that can be

represented in our database.

User-defined time

Columns in a temporal table may also be of a temporal type. They are treated as any

other value would be, without any special treatment. In order to make evident that

these values do not interact with the concept of time dimensions, they are thought of

as user-defined time.

Explicit and implicit data

I also make the distinction between explicit and implicit data. Explicit data are data

actually stored in SQL tables containing the annotation columns just described.

Implicit data, on the other hand, are data that are described indirectly but are,

Pandamator 1.9.4 July 27, 2011

14

nevertheless, most useful to us when transcribed to state or event relations. Such data

in Pandamator are periodically scheduled data and data described by state transition

rules on event relations, to be described later.

Now and Forever

The last row of a history needs to have some specific value for its ValidToDate,

which we might intend to be ‘now’, ‘forever’, ‘don’t know’, ‘until changed’ or NULL

i.e. no value at all. In order not to digress in this discussion, the value I use is January

1
st
, 3000, which is sufficiently distant not to be mistaken for an actual input value and

can be represented by virtually all RDBMSs (cf. Snodgrass: Developing Time-

Oriented Database Applications in SQL). But practically any distant value will do, so

long as the interval it forms with a real one will make sense.

Snapshot at a specific instant

A temporal database can be thought of as describing a multitude of non-temporal

databases, one for each moment in time. Projecting a temporal database to the time

dimension produces what is called a snapshot, which is the state of the described

universe of discourse at the specific moment. The result is a non-temporal relation.

Figure 2: Snapshots s1, s2, s3 etc.

Producing a snapshot is very simple with the representation I have described, as it

suffices to adorn every WHERE clause of every subquery with the condition

p.ValidFromDate <= T and T < p.ValidToDate, where T is the moment in question,

for every table p that appears in the subquery. The simplicity of this operation, sadly,

is not shared with any other operation in the field of temporal support.

Given the state relation example from a previous section, its snapshot on February 5
th

is the following snapshot relation.

Data Table 3: Snapshot of the example state relation

id (PK) val

1 1

2 1

Viewing a temporal database as shorthand for describing snapshot databases at

various time instants allows one to structure temporal data correctly. For example, a

relation with columns for a validity period and a column to hold the total energy

consumption in kWh during that period does not make sense as a state relation,

because projecting at any given instant does not produce anything meaningful. A state

relation with a column to hold current energy consumption in kW, on the other hand,

is correctly designed because its snapshot equivalent means something at any instant

Pandamator 1.9.4 July 27, 2011

15

in time. Such “semi-conformant” relations can be transformed into proper state

relations in order to benefit from all the tools available for proper temporal data.

Query at each instant (sequenced query)

Generalizing a query to produce results at each instant in time is quite difficult, but it

is central to using a temporal database. These kinds of queries are referred to as

“sequenced queries” in most of the bibliography, and you’ll have to look it up if you

want to know why on earth they are named that way. All it matters is that sequenced

queries are state relations composed of the equivalent snapshots, which means that

there is no interaction whatsoever of different instants among themselves. Sequenced

queries do not and can not refer to the timestamping columns.

An example of a sequenced query is calculating COUNT(*) on the state relation from

a previous section. The resulting state relation follows.

Data Table 4: Example of a sequenced query

COUNT(*) ValidFromDate ValidToDate

1 2008-01-01 2008-01-15

2 2008-01-15 2008-01-20

1 2008-01-20 2008-02-01

2 2008-02-01 2008-02-10

1 2008-02-10 2008-02-25

Query across time (non-sequenced query)

The third kind of queries in a temporal database is queries across all time. These

queries do not enjoy any kind of support from Pandamator (or any other temporal

SQL) but I have tried to tackle some common kinds of such queries in the sequel, and

hopefully provide useful tips.

Many useful non-sequenced queries can be expressed on top of sequenced queries.

For example, using the state relation from a previous section, finding the longest

amount of time two or more entities had the same “val” attribute values. This can be

done in two steps.

First, calculate VAL GROUP BY VAL HAVING COUNT(*)>1 as a sequenced

query (rows eliminated by HAVING are shown for clarity, but struck through).

Data Table 5: Example of a sequenced subquery of a non-sequenced query

val COUNT(*) ValidFromDate ValidToDate

1 1 2008-01-01 2008-01-10

2 1 2008-01-10 2008-01-20

1 1 2008-01-15 2008-02-01

1 2 2008-02-01 2008-02-10

1 1 2008-02-10 2008-02-25

Pandamator 1.9.4 July 27, 2011

16

The remaining task is easy to compute given the resulting state relation and making

explicit use of the timestamping columns.

This partitioning of non-sequenced queries into sequenced subqueries and non-

sequenced outer queries means that, even though there will be no inherent support for

non-sequenced queries in Pandamator, its upcoming support of sequenced queries will

benefit this area as well.

Coalescing

Coalescing, in the context of temporal data, means to merge adjacent timestamped

rows having identical column values, in order to represent a temporal relation in the

fewest number of timestamped rows possible. There is but a single such

representation for each relation, so a coalesced representation can be considered a

normal form.

Whether two values are identical or not, is a notion that is wider than the three-valued

equality of SQL. In essence:

• When both values are non-null, they are identical if they are equal.

• When both values are null, they are identical, as well.

• When one is null and the other is not, they are not identical.

Integrity

One of the big hurdles when working with temporal databases is maintaining

integrity. Integrity comes for free when using plain SQL in a plain RDBMS, but

expressing it for temporal data is especially challenging. You will see that the amount

and the complexity of the SQL code needed virtually ensures that, even when people

annotate data with intervals and effortlessly use snapshot queries, do not go the extra

step to add it. Combined with the difficulty to modify temporal data correctly, the

result is damaged data.

The integrity constraints currently offered by Pandamator are explained subquently.

Candidate constraints for inclusion in the future are:

• Foreign keys on Unique constraints, not just on the Primary Key

• Time-invariant constraints on specific columns

Primary Key and Unique

There cannot be any instant where two or more rows have the same values for the

primary key columns. A primary key for event relations can be described in plain

SQL, but state relations demand a complex trigger.

Pandamator also supports unique constraints, which have similar semantics but whose

columns are nullable. Currently, foreign keys can only reference primary key

columns, not columns of unique constraints.

Pandamator 1.9.4 July 27, 2011

17

Figure 3: Primary Key Violation example

 (In this and the following such diagrams,

time increases to the right.)

There are two entities (named “A”) with

the same values for their primary key,

overlapping during the period shown in

blue.

Foreign Key

There cannot be any instant where a row in the referencing table does not correspond

to a row in the referenced table.

Pandamator does not support other unique constraints, so a foreign key can only refer

to a primary key.

Figure 4: Foreign key violation example

Entity B has a foreign key towards entity

A, but entity A does not exist during the

period shown in grey.

Foreign Key is characterized by a delete rule, prescribing what happens during a

DELETE. I don’t encourage updates to primary keys, consequently Pandamator does

not support update rules on Foreign Keys.

On Delete Cascade

Figure 5: On Delete Cascade

Deletion of A cascades to B for the

deletion period, breaking B up as needed.

On Delete Set Null

Pandamator 1.9.4 July 27, 2011

18

Figure 6: On Delete Set Null

Deletion of A sets the foreign key on B to

NULL for the deletion period, breaking B

up as needed. In the example, a period of

B shown in blue, is broken up into three

periods, the middle one shown in light

blue having NULL as foreign key.

On Delete Restrict

Figure 7: On Delete Restrict

Deletion of A is inhibited if a foreign key

exists to it at any time during the deletion

period.

Constant

Columns defined as constant are immutable over time. This constraint, like that of

contiguous history, has no counterpart in plain SQL, and is a non-sequenced

constraint.

Contiguous History

This is just a handy constraint to ensure that a state relation does not have gaps in its

history. In other words, between two instants when an entity does exist with a specific

primary key, there cannot be any instant when that entity does not exist. This

constraint, like constant, has no counterpart in plain SQL, and is a non-sequenced

constraint. A relation that has a contiguous history and whose columns are all

constant is coalesced to a single database row.

The state relation used as an example in a previous section is not contiguous, as the

entity with id=1 has a gap from January 20
th

 to February 1
st
.

Pandamator 1.9.4 July 27, 2011

19

Figure 8: Contiguous History violation

example

Entity A has a gap in its history, during

the period shown in grey.

Specialized Temporal Relations

Although Pandamator does not handle transaction time, when a relation is used in

such a manner that transaction time interacts in a specific manner with valid time, it is

called a specialized temporal relation, and one can find a corresponding taxonomy in

the Jensen Thesis. According to that taxonomy, a relation whose transaction time

coincides with its valid time, it is called a degenerate relation. If one just adds valid

time to an existing application, using snapshot operations at time ‘now’ throughout,

the database will consist of degenerate relations. The valid time of such a relation,

effectively stores the history of modifications.

Pandamator 1.9.4 July 27, 2011

20

Temporal SQL (ATSQL)

The dialect of temporal SQL understood by Pandamator is based on ATSQL.

Differences from ATSQL stem mainly from the fact that ATSQL was supposed to be

an extension of SQL3, while Pandamator ATSQL is based on SQL2 and makes no

effort to simulate the existence of the PERIOD datatype. Another difference is that

ATSQL did not support INSERT that mentions a whole query as the source, did not

support UPDATE and DELETE that mention joined tables, nor did it support

common table subexpressions. Also, ATSQL did not support event relations and did

not offer a way to perform a time-slice operation on anything other than the current

instant
2
. However, for reasons of continuity I will refer to the temporal dialect of

Pandamator as ATSQL, since someone familiar with the published version of ATSQL

will find it instantly recognizable. Whenever there is a notable difference from

ATSQL, I will clearly signal it.

In the current version (1.9.4), support of ATSQL is partial, has not been tested

extensively but seems stable enough. In order to permit a seamless user experience,

the user can delimit any SQL statements which should be passed uninterpreted to the

RDBMS with BEGIN NONSEQUENCED and END NONSEQUENCED.

Temporal Type of a Relation

Temporal SQL statements mean different things depending on the temporal type of

the relation they apply to and the specific SQL statement. I will call that relation, the

“unmodified relation”, a term of my own invention. The term “temporal type”, also of

my own invention, does not have a concise name in ATSQL and is roughly referred to

as “whether the table has temporal support”, since ATSQL did not extend beyond

state relations.

The following table can be used to determine the temporal type of a pairwise join. In

order to determine the temporal type of a multiple join in a query, one has to process

all joins pairwise. The type of join (cross, inner, etc) is irrelevant, and Pandamator

does not even interpret the logic behind each type of join, since it transforms temporal

SQL into regular SQL that uses the same types of joins. Note that the presence of an

event relation forces a temporal type of ‘event’.

Table 1: Temporal Type of a Pairwise Join

 Snapshot (regular,

non-temporal)

State Event

Snapshot

(regular)

Snapshot State Event

State State Event

Event Event

2
 Teradata (http://www.teradata.com/t/database/Teradata-Temporal/) uses the syntax “AS OF

timestamp” where Pandamator uses “ON timestamp” for such queries

Pandamator 1.9.4 July 27, 2011

21

In order to determine the temporal type of an unmodified relation, one should also

combine the table source (table or join) in FROM with the temporal type of all

directly referenced subqueries, using the same pairwise table. This is because

subqueries are syntactic sugar and that they ultimately correspond to joins (‘hidden’

joins).

EXCEPT , INTERSECT and UNION between relations of different temporal type is

forbidden.

Temporal Statement Modifiers

ATSQL makes use of what are called “temporal statement modifiers”, which are short

annotations placed before regular SQL to denote the appropriate temporal

interpretation. This concept allows a programmer to transfer regular SQL skills to the

temporal domain, and appropriate defaults allow programs with existing SQL code to

switch to temporal SQL without any modification.

Temporal Statement Modifiers make use of the “reserved words” VALIDTIME and

NONSEQUENCED. The following tables define the operation and the resulting

temporal type of SQL statements.

Table 2: Temporal Statement Modifier effect on SELECT

Temporal Statement
Modifier

Meaning on regular
tables

Meaning on state or
event tables

(nothing) Regular SQL, returns

snapshot relation

Snapshot at current instant,

returns snapshot relation

VALIDTIME ON <x> Not applicable Snapshot at specified

instant, returns snapshot

relation

VALIDTIME Not applicable Sequenced semantics,

returns state or event

relation

VALIDTIME FROM <x>
TO <y>

Not applicable Sequenced semantics, limits

operation to specified span,

returns state or event

relation

NONSEQUENCED
VALIDTIME

Regular SQL, returns

snapshot relation

Non-sequenced semantics,

returns non-temporal

relation

NONSEQUENCED
VALIDTIME FROM <x>
TO <y>

Regular SQL, returns state

relation with specified span

Non-sequenced semantics,

returns state relation with

specified span

NONSEQUENCED
VALIDTIME ON <x>

Returns event relation with

specified timestamp

Non-sequenced semantics,

returns event relation with

specified timestamp

Table 3: Temporal Statement Modifier effect on DELETE/UPDATE

Pandamator 1.9.4 July 27, 2011

22

Temporal Statement
Modifier

Meaning on regular
tables

Meaning on state or
event tables

(nothing) Regular SQL Operate from current instant

to forever

VALIDTIME ON <x> Not applicable Operate from specified

instant to forever

VALIDTIME Not applicable Sequenced semantics,

operate at each instant

VALIDTIME FROM <x>
TO <y>

Not applicable Sequenced semantics, limit

operation to specified span

NONSEQUENCED
VALIDTIME

Regular SQL Non-sequenced semantics

NONSEQUENCED
VALIDTIME FROM <x>
TO <y>

Not applicable Not applicable

NONSEQUENCED
VALIDTIME ON <x>

Not applicable Not applicable

Table 4: Temporal Statement Modifier effect on INSERT

Temporal Statement
Modifier

Meaning on regular
tables

Meaning on state or
event tables

(nothing) Regular SQL Insert from current instant to

forever

VALIDTIME ON <x> Not applicable Insert from specified instant

to forever

VALIDTIME Not applicable Sequenced semantics, insert

at each instant

VALIDTIME FROM <x>
TO <y>

Not applicable Sequenced semantics, limit

insertion to specified span

NONSEQUENCED
VALIDTIME

Regular SQL Non-sequenced semantics

NONSEQUENCED
VALIDTIME FROM <x>
TO <y>

Not applicable Not applicable

NONSEQUENCED
VALIDTIME ON <x>

Not applicable Not applicable

Inheritance of Temporal Statement Modifiers

Temporal statement modifiers are inherited from the outer scope to inner scopes,

unless overridden by explicit modifiers. This necessitated the introduction of an

explicit modifier for snapshot operation, because in usual ATSQL, there was no way

to specify snapshot semantics for an inner query whose absence of an explicit

modifier would make it inherit an implicit one from its outer scope. The following

table lists the inherited temporal statement modifiers.

Pandamator 1.9.4 July 27, 2011

23

Table 5: Inherited Temporal Statement Modifier

Outer Inherited

VALIDTIME ON <x> VALIDTIME ON <x>

VALIDTIME VALIDTIME

VALIDTIME FROM <x> TO <y> VALIDTIME

NONSEQUENCED VALIDTIME NONSEQUENCED VALIDTIME

NONSEQUENCED VALIDTIME FROM
<x> TO <y>

NONSEQUENCED VALIDTIME

NONSEQUENCED VALIDTIME ON <x> NONSEQUENCED VALIDTIME

Pandamator 1.9.4 July 27, 2011

24

Temporal DDL

As of version 1.9.3, Pandamator supports temporal DDL.

Adding Validtime Support

CREATE VALIDTIME

Adds the infrastructure (cf. SQL Infrastructure). The file “AddTemporalSupport.sql”

should be in the current directory.

Refreshing the Validtime Support

ALTER VALIDTIME

Recreates all artifacts based on the current temporal metadata (cf. SQL Generation). It

should be called once after any of the following statements have been called, because

this operation is quite expensive, as it can create a huge SQL script.

Declaring the Temporal Type of a Table

ALTER TABLE <table name> ADD VALIDTIME(STATE)

ALTER TABLE <table name> ADD VALIDTIME(EVENT)

Declares a table as a temporal table with the specified temporal type.

Undeclaring a Temporal Table

ALTER TABLE <table name> DROP VALIDTIME

Undeclares a table as a temporal table.

Declaring a Validtime Constraint

ALTER TABLE <table name> ADD VALIDTIME CONSTRAINT
<constraint name> <constraint>

Declares a validtime constraint, where <constraint> is one of the following:

• CONTIGUOUS

• PRIMARY KEY (<columns>)

• UNIQUE (<columns>)

• CONSTANT (<columns>)

• FOREIGN KEY (<columns>) REFERENCES <primary table
name> ON DELETE <delete rule>

Undeclaring a Validtime Constraint

ALTER TABLE <table name> DROP VALIDTIME CONSTRAINT
<constraint name>

Undeclares a validtime constraint.

Pandamator 1.9.4 July 27, 2011

25

QueryExpress, the Pandamator IDE

Pandamator has extended an open-source IDE called QueryExpress by Joseph

Albahari. Working with QueryExpress is no different that working with a usual IDE,

so this chapter will mainly focus on the temporal additions.

QueryExpress can connect to SQL Server and Oracle databases, as well as databases

accessible through OLE-DB. Be aware that only SQL Server is currently supported by

Pandamator.

Figure 9 The QueryExpress connection dialog

There is a drop-down control to select the current database.

Figure 10 The database selection control

A database which does not currently have temporal support can be identified because

a button with a cross and the marking “vt” will be active (“Add ValidTime”). Pushing

that button will have the effect of executing “CREATE VALIDTIME” (cf.Adding

Validtime Support).

Figure 11 An active "Add ValidTime" button

When the database already has temporal support, the button will be inactive.

Pandamator 1.9.4 July 27, 2011

26

Figure 12 An inactive "Add ValidTime" button

The object browser has been extended to show the temporal type and the validtime

constraints of the tables and views.

Figure 13 The object browser

One can use the command window to execute arbitrary ATSQL. The message pane

underneath reflects the outcome.

Figure 14 Command execution

Executing one or more queries presents the results in a series of tabs, which are either

data grids or timelines.

Figure 15Result tabs

Pandamator 1.9.4 July 27, 2011

27

Figure 16 Data grid

Figure 17Timeline

Pandamator 1.9.4 July 27, 2011

28

Translating Temporal SQL

Translating Temporal Queries into SQL92

The prototype implementation of ATSQL (TimeDB) is available for download on the

Internet, and is by definition the standard to compare with. The translation

Pandamator does is not based in rephrasing temporal SQL using step-by-step

applications of temporal algebra operators, like TimeDB does. Instead, it fragments

the time axis into all spans defined by all endpoints of rows in the relations involved,

runs the SQL query in each one, and coalesces the resulting relation. This amounts to

running a separate snapshot query at every instant in time. Instants within the same

span cannot be distinguished, because nothing changes during it, so running the query

on the span instead of at each individual instant is an optimization. As a matter of

convention, I will refer to the relations containing all pertinent instants and the

resulting spans as SpanBoundaries and AllSpans correspondingly.

For example, to treat a query that involves relation A and relation B (in the presence

of a period of applicability defined by @start_date and @end_date, to make it a little

harder), one would define the following CTEs.

with SpanBoundaries
as (
 select ValidFromDate thedate from A
 union
 select ValidToDate thedate from A
 union
 select ValidFromDate thedate from B
 union
 select ValidToDate thedate from B
 union
 select @start_date
 union
 select @end_date
),
AllSpans(ValidFromDate, ValidToDate)
as (
 select a.thedate,b.thedate from SpanBoundaries a,
SpanBoundaries b
 where a.thedate < b.thedate
 and not exists (select * from SpanBoundaries c where a.thedate
< c.thedate and c.thedate < b.thedate)

)

Expressing the original query on each span of AllSpans is an operation that is defined

syntactically, and is independent of the complexity of the query. In short, AllSpans is

added to the source tables and all joins are modified to join to it as well. Since a row

of AllSpans is always contained within or coincides with any row in any table

involved, this is done with the simple expression p1.ValidFromDate <=

span.ValidFromDate and span.ValidToDate <= p1.ValidToDate .

For example, a query

 validtime from @ValidFromDate to @ValidToDate
 select p1.[id], null, p1.[val] from [dbo].[C] p1
 inner join [dbo].[B] p2 on p1.[b_id] = p2.[id]

Pandamator 1.9.4 July 27, 2011

29

 inner join [dbo].[A] p3 on p2.[a_id] = p3.[id]
and p3.val < @val

which joins tables A, B and C, will be transformed to

 select p1.[id], null,
p1.[val],span.ValidFromDate,span.ValidToDate from AllSpans span
 inner join [dbo].[C] p1 on p1.ValidFromDate <=
span.ValidFromDate and span.ValidToDate <= p1.ValidToDate
 inner join [dbo].[B] p2 on p2.ValidFromDate <=
span.ValidFromDate and span.ValidToDate <= p2.ValidToDate and
p1.[b_id] = p2.[id]
 inner join [dbo].[A] p3 on p3.ValidFromDate <=
span.ValidFromDate and span.ValidToDate <= p3.ValidToDate and
p2.[a_id] = p3.[id]
 where @ValidFromDate <= span.ValidFromDate and span.ValidToDate
<= @ValidToDate
 and p3.val < @val

Naturally, the presence of CTEs, subqueries and aggregates, demands a little more

effort than what is described here, but the important thing to retain is the central idea

behind the transformation. This approach extends to aggregates, for example, if one

takes care to add span.ValidFromDate to the grouping columns.

Implementing Coalescing in SQL92

Coalescing is an important operation to ensure a succinct representation of temporal

data.

Pandamator uses a recursive formulation of coalescing that has been found to scale

well on more than 100,000 rows
3
, in contrast to the code found in Snodgrass. Column

equality is implemented to cope with NULL values, for example l. col1 = f. col1

AND (l. col2 = f. col2 or coalesce(l. col2, f. col2) is null) where

column col1 is non-null whereas column col2 is nullable.

with
Coal(columns,ValidFromDate,ValidToDate)
as (
 select columns, ValidFromDate, ValidToDate
 from R p2
 where not exists(select * from R p1
 where p1.ValidToDate = p2.ValidFromDate
 and p1 and p2 column equality
)

 union all

 select p1 columns, p1.ValidFromDate, p2.ValidToDate
 from Coal p1
 inner join R p2 on p1.ValidToDate = p2.ValidFromDate
 and p1 and p2 column equality

3
 A version that, curiously, performs slightly worse is:
Coalesced(columns,ValidFromDate,ValidToDate) as (
 select distinct p1 columns, p1.ValidFromDate, p1.ValidToDate from Coal p1
 where not exists(select * from R p2 where p1.ValidToDate = p2.ValidFromDate
 and p1 and p2 column equality)
)

Pandamator 1.9.4 July 27, 2011

30

),
Coalesced(columns,ValidFromDate,ValidToDate)
as (
 select p1 columns, p1.ValidFromDate, max(p1.ValidToDate)
 from Coal p1
 group by p1 columns, p1.ValidFromDate
)
select * from Coalesced

Coalescing corresponds to replacing relation R with its coalesced equivalent.

Pandamator does this in-place without making use of a temporary table, by means of

the following mechanism. Rows that are first in a series of coalesced ones have their

ValidToDate extended, and rows that were subsequent in the series end up being

subsumed by the extended ones and are then deleted.

with
CoalescedSpans(columns,start_date,end_date)
as (
 coalescing code

)
update R
set ValidToDate = p2.ValidToDate
from R p1
inner join CoalescedSpans p2
 on p1 and p2 column equality
 and p1.ValidFromDate=p2.ValidFromDate and p1.ValidToDate <
p2.ValidToDate;

delete from R
from R p1
where exists(
 select * from R p2
 where p1 and p2 column equality
 and p2.ValidFromDate < p1.ValidFromDate and p1.ValidToDate <=
p2.ValidToDate

);

The meaning of a state relation is independent of whether it is coalesced or not. This

notion is called “snapshot reducibility”. However, for reasons of parsimony and ease

of use, Pandamator always coalesces state relations that are used either at top-level, or

as subqueries in snapshot or non-sequenced queries. This enables one, for example, to

write a query to find durations during which an attribute did not change might seem

straightforward to formulate thus:

with r1 as (validtime select x from R)

nonsequenced validtime select x, ValidToDate-ValidFromDate from r1

Unfortunately, coalescing is a complex operation that, when applied at the end of a

complex generated query can literally freeze the RDBMS. Pandamator enables

conditional inhibition of coalescing with the FULL directive before SELECT (subject

to change).

Translating Sequenced Queries into SQL92

Sequenced queries, whether they are the main query or a subquery, are treated in the

same manner. I will use the following query tree for my example, where queries are

presented as rectangles marked with “T”, if they result in state relations, or “S”, if

they result in snapshot relations.

Pandamator 1.9.4 July 27, 2011

31

Figure 18: Sample Query Tree for Translating Sequenced Queries

First, the queries resulting in state relations are identified, along with their subqueries

that also result in state relations, recursively. This identifies distinct query subtrees for

further processing, like in the following sketch.

Figure 19: Query Subtrees for Translating Sequenced Queries

Three query subtrees, labeled 1, 2 and 3 are identified here.

For each subtree, Pandamator will create a CTE for the root query and also create

CTEs for the coalesced version of the resulting relation. The original root queries are

replaced, at the point of use, with select * from Coalesced_T for each query

subtree headed by T. See Appendix A: Query Transformation Example (Not

Coalesced), and Appendix B: Query Transformation Example (Coalesced).

Translating Temporal Deletes into SQL92

Snodgrass (Snodgrass: Developing Time-Oriented Database Applications in SQL)

describes a method to execute updates and deletes based on single-table queries and

suggests a “case analysis on the interaction” of periods from all tables involved when

updates and deletes involve more tables. Unfortunately, this advice does not provide a

concrete way to mechanize the process. I will describe, in the sequel, a way to

describe temporal updates and deletes in a way that is independent of the number of

tables involved in the associated query or its complexity. The underlying mechanism

owes its inspiration to N. Lorentzos whose interval-extended SQL (IXSQL) was

based semantically on operations that split and joined intervals at instants determined

by the actual data in a table, to implement all necessary temporal algebra operators.

DELETE is defined at minimum using a WHERE clause on a table (which, however,

could mention other tables using subqueries), or by utilizing a full FROM clause

containing join expressions. Either way, it is defined on top of a query that describes

the primary key and the spans of the entities that should be deleted. I will refer to this

query as DeletedSpans. The complementary relation of DeletedSpans with respect to

the whole relation R is RetainedSpans. In other words, (DeletedSpans union

RetainedSpans) ≡ R. Deletion amounts to replacing R by RetainedSpans.

Pandamator 1.9.4 July 27, 2011

32

The canonical way of expressing DELETE on top of DeletedSpans (which will be

chopped according to AllSpans, as shown in Translating Temporal Queries) would be

as follows. Note that only primary key columns are actually used by the code, even

though all columns are contained in the CTEs.

Definition of SpanBoundaries, AllSpans & DeletedSpans,

RetainedSpans(columns,start_date,end_date)
as (
 select p1 columns,span.start_date,span.end_date from AllSpans
span
 inner join R p1 on p1.start_date <= span.start_date and
span.end_date <= p1.end_date
 where not exists (
 select * from DeletedSpans p2
 where p1 pkey = p2 pkey and span.start_date=p2.start_date
and span.end_date=p2.end_date
)
),
CoalescedRetainedSpans(columns,start_date,end_date)
as (
 coalescing code

)
select columns,start_date,end_date
into #temp
from CoalescedRetainedSpans;

delete from R;

insert into R(columns,start_date,end_date)
select columns,start_date,end_date
from #temp;

drop table #temp;

Pandamator employs an optimized version that needs less data to be moved to and

from the temporary table. This is done by saving only retained spans of R resulting

from chopping off a row in R, and saving markers to rows of R that must be deleted

as a whole. Markers are distinguished by setting ValidToDate = ValidFromDate,

which is invalid in a state relation.

Definition of SpanBoundaries, AllSpans & DeletedSpans,

RetainedSpans(columns, [val],ValidFromDate,ValidToDate)
as (
 select p1 columns,span.ValidFromDate,span.ValidToDate from
AllSpans span
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and
span.ValidToDate <= p1.ValidToDate
 where not exists (-- there is no DeletedSpan coinciding with
it
 select * from DeletedSpans p2
 where p1 pkey = p2 pkey and
span.ValidFromDate=p2.ValidFromDate and
span.ValidToDate=p2.ValidToDate
) and exists (-- but there is a DeletedSpan overlapping the
whole row
 select * from DeletedSpans p2
 where p1 pkey = p2 pkey and
p1.ValidFromDate<p2.ValidToDate and p2.ValidFromDate<p1.ValidToDate
)

Pandamator 1.9.4 July 27, 2011

33

),
CoalescedRetainedSpans(columns,start_date,end_date)
as (
 coalescing code

) ,
SavedSpans(columns,ValidFromDate,ValidToDate)
as (
 select p1 columns,p1.ValidFromDate,p1.ValidToDate from
CoalescedRetainedSpans p1 -- saved spans
 union
 select p1 columns,p1.ValidFromDate,p1.ValidFromDate from
DeletedSpans p1 -- markers
)
select columns,ValidFromDate,ValidToDate
into #temp
from CoalescedRetainedSpans;

-- Delete from R every row that overlaps with saved spans
delete from R
from R p1
where exists(
 select * from #temp p2
 where p1 pkey = p2 pkey and p1.ValidFromDate<p2.ValidToDate and
p2.ValidFromDate<p1.ValidToDate
);

--delete rows pointed to by #temp markers
delete from R
from R p1
where exists(
 select * from #temp p2
 where p1 pkey = p2 pkey and p1.ValidFromDate=p2.ValidFromDate
and p1.ValidFromDate=p2.ValidToDate
);

insert into columns,ValidFromDate,ValidToDate)
select columns,ValidFromDate,ValidToDate
from #temp
where ValidFromDate<>ValidToDate; --bypass markers

drop table #temp;

Translating Temporal Updates into SQL92

UPDATE is defined at minimum using a WHERE clause on a table (which, however,

could mention other tables using subqueries), or by utilizing a full FROM clause

containing join expressions. Either way, it is defined on top of a query that describes

the primary key, the column values and the spans of the entities that should be the

outcome. I will refer to this query as AlteredSpans. The complementary relation of

AlteredSpans with respect to the whole relation R is RetainedSpans. In other words,

(AlteredSpans union RetainedSpans) ≡ R. Update amounts to replacing R by

RetainedSpans.

The canonical way of expressing UPDATE on top of AlteredSpans is as follows.

Definition of SpanBoundaries, AllSpans & AlteredSpans,

RetainedSpans(columns,ValidFromDate,ValidToDate)
as (

Pandamator 1.9.4 July 27, 2011

34

 select p1 columns,span.ValidFromDate,span.ValidToDate from
AllSpans span
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and
span.ValidToDate <= p1.ValidToDate
 where not exists (-- there is no AlteredSpan coinciding with
it
 select * from AlteredSpans p2
 where p1 pkey = p2 pkey and
span.ValidFromDate=p2.ValidFromDate and
span.ValidToDate=p2.ValidToDate
)
),
FinalSpans
as (
 select * from AlteredSpans
 union all
 select * from RetainedSpans
),
CoalescedFinalSpans(columns,ValidFromDate,ValidToDate)
as (
 coalescing code

)
select columns,start_date,end_date
into #temp
from CoalescedFinalSpans;

delete from R;

insert into R(columns,start_date,end_date)
select columns,start_date,end_date
from #temp;

drop table #temp;

Pandamator employs an optimized version that needs less data to be moved to and

from the temporary table. This is done by saving only altered spans of R resulting

from updating a portion of a row in R and retained spans that are the remaining

portions. Consequently, only those rows in R that are affected need be deleted before

the contents of the temporary table are inserted back into R.

Definition of SpanBoundaries, AllSpans & AlteredSpans,

RetainedSpans(columns, ValidFromDate, ValidToDate)
as (
 select p1 columns, span.ValidFromDate, span.ValidToDate from
AllSpans span
 inner join R p1 on p1.ValidFromDate <= span.ValidFromDate and
span.ValidToDate <= p1.ValidToDate
 where not exists (-- there is no AlteredSpan coinciding with
it
 select * from AlteredSpans p2
 where p1 pkey = p2 pkey and span.ValidFromDate =
p2.ValidFromDate and span.ValidToDate = p2.ValidToDate
) and exists (-- but there is an AlteredSpan overlapping the
whole row
 select * from AlteredSpans p2
 where p1 pkey = p2 pkey and p1.ValidFromDate <
p2.ValidToDate and p2.ValidFromDate < p1.ValidToDate
)
),

Pandamator 1.9.4 July 27, 2011

35

FinalSpans
as (
 select * from AlteredSpans
 union all
 select * from RetainedSpans
),
CoalescedFinalSpans(columns, ValidFromDate, ValidToDate)
as (
 coalescing code

)
select columns, ValidFromDate, ValidToDate
into #temp
from CoalescedFinalSpans;

-- Delete every row that overlaps with saved spans
delete from R
from R p1
where exists(
 select * from #temp p2
 where p1 pkey = p2 pkey and p1.ValidFromDate < p2.ValidToDate
and p2.ValidFromDate < p1.ValidToDate
);

insert into R(columns, ValidFromDate, ValidToDate)
select columns,ValidFromDate,ValidToDate
from #temp;

drop table #temp;

When UPDATE refers to a single table, Pandamator uses simpler code taken from

Snodgrass.

INSERT INTO R (columns, ValidFromDate, ValidToDate)
SELECT columns, ValidFromDate, @ValidFromDate
FROM R
WHERE condition on table
AND ValidFromDate < fromdate
AND fromdate < ValidToDate;

INSERT INTO R(columns, ValidFromDate, ValidToDate)
SELECT columns, @ValidToDate, ValidToDate
FROM R
WHERE condition on table
AND ValidFromDate < todate
AND todate < ValidToDate;

UPDATE R
SET values
WHERE condition on table
AND ValidFromDate < todate
AND fromdate < ValidToDate;

UPDATE R
SET ValidFromDate = fromdate
WHERE condition on table
AND ValidFromDate < fromdate
AND fromdate < ValidToDate;

UPDATE R

Pandamator 1.9.4 July 27, 2011

36

SET ValidToDate = @ValidToDate
WHERE condition on table
AND ValidFromDate < todate
AND todate < ValidToDate;

Call to coalescing code

Pandamator 1.9.4 July 27, 2011

37

Useful Non-Sequenced Idioms

Why Sequenced Queries Are Not Enough

Truth be told, ATSQL (and SQL2, its older sibling), provide a solution for just a

single real problem in using temporal databases, which is sequenced operations.

Unfortunately, the majority of useful queries one might think of after adopting the

temporal point of view, are non-sequenced, which amounts to saying that no help is

available for implementing them.

I have collected here a number of useful non-sequenced idioms that I hope will

provide some comfort in that area. Some of them might end up as language

extensions, although I am not very eager to add isolated solutions to isolated

problems.

Event Statemachines

Timestamped data that represent observations, gauge readings, invoices etc are very

common in non-temporal databases in every application area. Sometimes a stream of

such events is thought of as implying an associated succession of states, which is

expressed as a state relation in a temporal database. A statemachine, they way it will

be described here, is applicable only when the underlying events do not coincide. If

they do, the logic to “serialize” the events and feed them, one-by-one, to the

statemachine, will not work and will need to be extended. This property of the event

relation is called being per-partition sequential, a partition in that context being the

item collection corresponding to the same object surrogate (see terminology in Time-

varying data).

Formulating the query that produces this state relation is cumbersome, but it looks

something like the following.

with
AllInvoiceSpans(id,invoicetype,val,ValidFromDate,ValidToDate)
as (
 select a.id,a.invoicetype,a.val,a.ValidOnDate,b.ValidOnDate
from InvoiceEvents a,InvoiceEvents b
 where a.ValidOnDate < b.ValidOnDate
 and a.id = b.id
 and not exists (select * from InvoiceEvents c where a.id = c.id
and a.ValidOnDate < c.ValidOnDate and c.ValidOnDate < b.ValidOnDate)

 union all

 select a.id,a.invoicetype,a.val,a.ValidOnDate,'3000-01-01' from
InvoiceEvents a
 where not exists (select * from InvoiceEvents b where
a.ValidOnDate < b.ValidOnDate and a.id = b.id)

),
States(id,state,val,ValidFromDate,ValidToDate)
as (
 select id, 0, val, ValidFromDate, ValidToDate from
AllInvoiceSpans a
 where invoicetype = 100

Pandamator 1.9.4 July 27, 2011

38

 and not exists (select * from AllInvoiceSpans b where a.id =
b.id and b.ValidToDate = a.ValidFromDate)

 union all

 select id, 1, val, ValidFromDate, ValidToDate from
AllInvoiceSpans a
 where invoicetype = 110
 and not exists (select * from AllInvoiceSpans b where a.id =
b.id and b.ValidToDate = a.ValidFromDate)

 union all

 select a.id, 10, a.val+b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 0 and b.invoicetype = 120

 union all

 select a.id, 11, a.val+b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 1 and b.invoicetype = 120

 union all

 select a.id, 14, a.val+b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 10 and b.invoicetype = 140

 union all

 select a.id, 13, a.val-b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 10 and b.invoicetype = 130

 union all

 select a.id, 24, a.val+b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 11 and b.invoicetype = 140

 union all

 select a.id, 23, a.val-b.val, b.ValidFromDate, b.ValidToDate
from States a, AllInvoiceSpans b
 where a.id = b.id and a.ValidToDate = b.ValidFromDate and
a.state = 11 and b.invoicetype = 130
)
select * from States

It could be facilitated by introducing some appropriate syntax, like

select validtime set from <someeventset> where <maincond> as (
 goto <s1> select <values...> where <cond>
 goto <s2> select <values...> where <cond>
from <s1>

Pandamator 1.9.4 July 27, 2011

39

 goto <s3> select <values...> where <cond>
 goto <s4> select <values...> where <cond>
from any
 goto <s5> select <values...> where <cond>
 goto <s6> select <values...> where <cond>
 …

)

The point would be to produce SQL code like the own shown previously, given

something like

select validtime set from InvoiceEvents as (
 goto 0 select id, val where invoicetype = 100
 goto 1 select id, val where invoicetype = 110
from 0
 goto 10 select id, old.val+val where invoicetype = 120
from 1
 goto 11 select id, old.val+val where invoicetype = 120
from 10
 goto 14 select id, old.val+val where invoicetype = 140
 goto 13 select id, old.val-val where invoicetype = 130
from 11
 goto 24 select id, old.val+val where invoicetype = 140
 goto 23 select id, old.val-val where invoicetype = 130

)

Such helper syntax, is under consideration for inclusion in Pandamator.

As an example of a statemachine in action, consider the following event relation.

Data Table 6: Event Relation to apply statemachine to

id invoicetype val ValidOnDate

1 100 3 2008-01-01

1 120 0 2008-01-10

1 140 3 2008-01-12

2 110 4 2008-01-05

2 120 0 2008-01-06

2 130 4 2008-01-10

Running the statemachine above produces the following state relation.

Data Table 7: Event Statemachine results

id state Val ValidFromDate ValidToDate

1 0 1 2008-01-01 2008-01-10

1 10 2 2008-01-10 2008-01-12

1 14 2 2008-01-12 3000-01-01

2 1 2 2008-01-05 2008-01-06

2 11 1 2008-01-06 2008-01-10

2 23 1 2008-01-10 3000-01-01

Pandamator 1.9.4 July 27, 2011

40

Status Transitions

When using a state relation that implements a statemachine (for example, having a

“status” column), either created out of an event relation, like before, or available

directly, there is a feature of Pandamator that can help enforce the correct state

transitions declaratively.

One can create a view implementing an event relation that records the transitions

(“status” values before and after), having a foreign key to a table holding the allowed

such pairs. Referential integrity constraints will ensure that attempting to make a

disallowed transition will be rejected.

Fold Queries

Fold queries are a class of non-sequenced queries that are formulated in a well-

structured manner and can formulated many problems that involve accumulation or

integration over time.

They are based on the fold higher-order functions commonly used in functional

programming. An example can help illustrate the operation of fold.

Given a sequence of values S=[s0, s1, s2, … sn], a function of two arguments f and a

starting value a, we can define the following functions.

fold_left(f, a, S) = f(…f(f(a, s0), s1), … sn)

fold1_left(f, S) = f(… f(f(s0, s1), s2) … sn)

fold_right(f, a, S) = f(s0, … f(sn-1, f(sn, a))…)

fold1_right(f, S) = f(s0, … f(sn-2, f(sn-1, sn))…)

The difference between the two variants is whether we supply an initial value or not

(in the latter case the sequence cannot have less than two elements).

Translating the same concept to a temporal relation, a fold query is a pairwise

application of a function to successive states to perform some kind of accumulation.

In order to account for gaps in the history, first we define the temporal complement of

a state relation (a term I coined myself). A temporal complement is a relation that fills

the gaps inside a non-contiguous history within a relation with null values for

columns other than the primary key ones. Its definition is

 select p1 key columns, p1 null non-key columns, p1.ValidToDate
as ValidFromDate, p2.ValidFromDate as ValidToDate
 from R p1
 inner join R p2 on p1 pkey = p2 pkey
 where p1.ValidToDate < p2.ValidFromDate
 and not exists(

select * from R p3
where p1 pkey = p3 pkey
and p1.ValidToDate < p3.ValidFromDate
and p3.ValidFromDate < p2.ValidFromDate

)

Fold queries can be expressed easily as recursive queries over the union of a relation

and its temporal complement.

Pandamator 1.9.4 July 27, 2011

41

An example of a fold1_left query is the following, that accumulates column val using

addition, starting with value -2 and treating NULL as -3.

with
-- Temporal complement
H_TC (id, b_id, val, ValidFromDate, ValidToDate)
as (
 select p1.id as id, null as b_id, null as val, p1.ValidToDate
as ValidFromDate, p2.ValidFromDate as ValidToDate
 from H p1
 inner join H p2 on p1.id=p2.id
 where p1.ValidToDate < p2.ValidFromDate
 and not exists(select * from H p3 where p3.id=p1.id and
p1.ValidToDate < p3.ValidFromDate and p3.ValidFromDate <
p2.ValidFromDate)
),
H_Full (id, b_id, val, ValidFromDate, ValidToDate)
as (
 select id, b_id, val, ValidFromDate, ValidToDate from H
 union all
 select id, b_id, val, ValidFromDate, ValidToDate from H_TC
),
SampleFold (id, ret, ValidOnDate)
as (
 select id, -2, ValidFromDate from H_Full p2
 where not exists(select * from H_Full p1 where p1.id=p2.id and
p1.ValidToDate <= p2.ValidFromDate)

 union all

 select p1.id, p1.ret+(CASE WHEN p2.val is null THEN -3 ELSE
p2.val END), p2.ValidToDate
 from SampleFold p1
 inner join H_Full p2 on p1.id=p2.id and p1.ValidOnDate =
p2.ValidFromDate
)

select id, ret, ValidOnDate from SampleFold order by id, ValidOnDate;

This example uses an operation which is concerned purely with the succession of

states and not their duration, but it is possible to use an operation which takes into

account durations as well. In this manner we could implement integration, as well as

any other non-standard aggregate operator.

Valid-time Partitioning

Valid-time partitioning is the partitioning of valid-time in spans over which we can

compute useful aggregates (this is called Valid-time Cumulative Aggregation). When

this is done using spans defined by a calendar, it is called Static Valid-time

Partitioning.

Joining with a schedule of the appropriate definition accomplishes this easily (cf.

Scheduled entities). The partitioning spans could be overlapping, to calculate

something based on a moving window.

Event Succession Queries

At times we need to query about patterns in an event stream. I call these queries event

succession queries. The following is an example that queries how many times any of

the following patterns appeared in a fictitious stream of invoices:

Pandamator 1.9.4 July 27, 2011

42

• 100 120 (meaning 100 followed by 120)

• 110 . 130 (meaning 110 followed by anything followed by 130)

SuccessionSpans(id,combinedvalue,thedate)
as (
 select a.id,a.[value]+b.[value],b.ValidOnDate from
InvoiceEvents a, InvoiceEvents b
 where a. ValidOnDate < b. ValidOnDate
 and a.id = b.id
 and a.invoicetype = 100 and b.invoicetype = 120
 and not exists (select * from InvoiceEvents c where a.id = c.id
and a. ValidOnDate < c. ValidOnDate and c. ValidOnDate < b.
ValidOnDate)

 union all

 select a.id, a.[value]+b.[value]+c.[value], c. ValidOnDate from
InvoiceEvents a,InvoiceEvents b,InvoiceEvents c
 where a. ValidOnDate < b. ValidOnDate and b. ValidOnDate < c.
ValidOnDate
 and a.id = b.id and b.id = c.id
 and a.invoicetype = 110 and c.invoicetype = 130
 and not exists (select * from InvoiceEvents c1 where a.id =
c1.id and a. ValidOnDate < c1. ValidOnDate and c1. ValidOnDate < b.
ValidOnDate)
 and not exists (select * from InvoiceEvents c2 where b.id =
c2.id and b. ValidOnDate < c2. ValidOnDate and c2. ValidOnDate < c.
ValidOnDate)

)

select count(*) cnt from SuccessionSpans

Pandamator 1.9.4 July 27, 2011

43

Branching Time (not yet incorporated)

Introduction

Branching time is an extension of valid time (which will be referred to as linear time

in the sequel) that can be used to represent alternative time axes (timelines),

branching freely off one another to create alternative represented realities. Although it

sounds arcane, such a concept can be used whenever one needs to create alternative

future data that nevertheless share a common past, like in a Web Content

Management System where designers create alternative future versions of a page in

advance.

I could not find any treatment of branching time in the (limited) bibliography I

studied, consequently I consider support of branching time in SQL to be a novel

contribution of Pandamator, albeit experimental.

Timeline Segments

The basic elements for the representation of branching time are timeline segments.

Timeline segments are time periods that optionally have a parent segment they branch

away from, at a specific branching instant.

Figure 20: Timeline Segment Branching

Segment t3 branches off segment t1, and

later segment t4 branches away from it.

Independently of that, segment t2

branches away from t1 at a later instant

than does t3.

Timelines

The branching of timeline segments forms a proper tree, and the paths from the root to

the leaves are timelines. As timelines are uniquely identified by the leaf segment, the

same identifier will be used to refer to both.

Figure 21: Timelines

Timeline t4 is formed by portions of

segments t1, t3 and all of t4.

Pandamator 1.9.4 July 27, 2011

44

Timeline segments would normally be valid forever, however one could specify a

ValidToDate to denote that we need not represent any temporal entity on that timeline

past that date.

It is possible to form forests, rather than trees, if needs dictate so. It is also possible to

form a forest of degenerate trees, each consisting of a single timeline, in which case

the database will be simply partitioned in separate “realities”, each identified by a

separate timeline identifier. In any of the aforementioned cases, the same logic holds

and we need not distinguish special cases in our treatment.

This representation of timelines is asymmetrical by design. I first experimented with

abutting segments, a design that made for simpler representation and treatment.

However, the operation of creating a new branch was a lot costlier in such a design,

resulting in massive updates to existing data. I concluded that the guiding principle

should be that existing data should be unperturbed by new data, particularly when

new data are supposed to lie in alternative “realities”.

Representation

The only modification to a temporal table, in order to support branching time, is to

add column ValidSegment, which holds a timeline segment id. Obviously a temporal

constraint is needed to ensure that the period falls within the validity of the timeline.

The referenced timeline segment actually annotates ValidToDate. The segment

ValidFromDate belongs to can be computed if needed but it is irrelevant to queries

and SQL generation as we focus on whole timelines.

Timeline segments are held in the following table.

create table timeline_segments (
 segment_id int not null primary key,
 parent_segment_id int,
 ValidFromDate datetime not null,
 ValidToDate datetime not null
);

Timelines are defined by the following view.

create view [dbo].[timelines] as
with timelines (timeline_segment_id, segment_id, ValidFromDate,
ValidToDate)
as (
 -- All segments belong to a timeline of their own
 select segment_id, segment_id, ValidFromDate, ValidToDate
 from timeline_segments p1

 union all

 -- All segments belong to the timelines of their branching
segments, up to the branching instant
 select p2.segment_id, p1.segment_id, p1.ValidFromDate,
p2.ValidFromDate
 from timeline_segments p1, timeline_segments p2
 where p1.segment_id = p2.parent_segment_id

 union all

 -- All segments belong to the timelines of all segments
branching off their immediate branching segments, recursively

Pandamator 1.9.4 July 27, 2011

45

 select p2.segment_id, p1.segment_id, p1.ValidFromDate,
p1.ValidToDate
 from timelines p1, timeline_segments p2
 where p1.timeline_segment_id = p2.parent_segment_id and
p1.segment_id <> p2.parent_segment_id
)

select * from timelines

Queries in branching time are slightly more complicated than queries in linear time,

because all interacting periods must be constrained to belong to the same timeline.

The following is a simple query on a table, in branching time.

select t1.timeline_segment_id timeline,p1.*
from tab p1
inner join timelines t1
on p1.ValidSegment=t1.segment_id and t1.ValidFromDate <=
p1.ValidToDate and p1.ValidToDate <= t1.ValidToDate

And the following is a query computing primary key violations in branching time.

SELECT distinct t3.timeline_segment_id, I1.id
id,dbo.LAST_INSTANT(I1.ValidFromDate,I2.ValidFromDate)
ValidFromDate,dbo.FIRST_INSTANT(I1.ValidToDate,I2.ValidToDate)
ValidToDate
 FROM [dbo].[BA] I1
 inner join [dbo].[BA] AS I2
 ON I1.[id] = I2.[id]
 AND (I1.ValidFromDate <> I2.ValidFromDate OR
I1.ValidToDate <> I2.ValidToDate)
 AND I1.ValidFromDate < I2.ValidToDate
 AND I2.ValidFromDate < I1.ValidToDate
 inner join timelines t3
 on i1.ValidSegment=t3.segment_id and
t3.ValidFromDate <= i1.ValidToDate and i1.ValidToDate <=
t3.ValidToDate
 inner join timelines t4
 on i2.ValidSegment=t4.segment_id and
t4.ValidFromDate <= i2.ValidToDate and i2.ValidToDate <=
t4.ValidToDate
 and t4.timeline_segment_id = t3.timeline_segment_id

The modifications are limited to one extra join with view “timelines” per table, and

the constraint that all timelines should coincide.

Virtual Database per Timeline

Like the representation of data in linear time can be viewed as a succinct way to

model separate database snapshots, one per time instant, the representation of data in

branching time can be viewed as a succinct way to model separate temporal

databases, one per timeline. Tables in branching time can be thought of as

specifications, and joining with view “timelines” actually produces the multitude of

distinct versions of the data on the appropriate timelines.

Pandamator 1.9.4 July 27, 2011

46

SQL Infrastructure

A single SQL file, named AddTemporalSupport.sql, is meant to be run against an

SQL Server Database to prepare for temporal support. Its contents are the following.

Temporal Metadata

A schema is created, called temporal_metadata. Inside it are created the four tables

which are explained in the sequel.

temporal_metadata.tables

• table_schema

• table_name

• table_type (one of “EVENT”, “STATE”)

temporal_metadata.table_constraints

• table_schema

• table_name

• constraint_name

• constraint_type (one of “PRIMARY KEY”, “FOREIGN KEY”,

“CONTIGUOUS”, “UNIQUE”, “CONSTANT”)

temporal_metadata.constraint_columns

• table_schema

• table_name

• column_name

• constraint_name

• ordinal_position

temporal_metadata.referential_constraints

• foreign_table_schema

• foreign_table_name

• foreign_constraint_name

• primary_table_schema

• primary_table_name

• primary_constraint_name

• delete_rule (one of “CASCADE”, “RESTRICT”, “SET NULL”)

Pandamator 1.9.4 July 27, 2011

47

Pseudo-DDL

Temporal metadata are populated by the following pseudo-DDL procedures. Contrary

to plain SQL, views are allowed as well as base tables.

TemporalDeclareTable

Declares the table as one needing temporal support. Annotation columns must already

exist in the table.

Called as: exec TemporalDeclareTable <schema>, <table>,
<table type>

For example: exec TemporalDeclareTable ‘dbo’, ‘a’, ‘STATE’

TemporalUndeclareTable

Undeclares the table from the temporal metadata.

Called as: exec TemporalUndeclareTable <schema>, <table>

For example: exec TemporalUndeclareTable ‘dbo’, ‘a’

TemporalDeclarePrimaryKey

Declares a temporal primary key. An index on the columns will not be created

automatically. Also, declaring a temporal primary key on an event table does not

result in any constraint-checking code being generated. The programmer should

declare a normal SQL PRIMARY KEY constraint on the same columns, as well.

Called as: exec TemporalDeclarePrimaryKey <constraint name>,
<schema>, <table>, <columns>

Columns are written in a single string, delimited by ‘[‘ and ‘]’.

For example: exec TemporalDeclarePrimaryKey ‘PK’, ‘dbo’, ‘a’,
‘[col1][col2]’

Because columns defined as the result of functions are always nullable, there is a way

to instruct TemporalDeclarePrimaryKey to not perform the check for nullable

columns, by prefixing the column string with a ‘U’, as in ‘U[col1][col2]’. The

responsibility for ensuring that the columns will never contain nulls, lies with the

programmer. Should the column contain any nulls, the result of all generated SQL is

unpredictable.

TemporalDeclareUnique

Declares a temporal UNIQUE constraint. An index on the columns will not be created

automatically.

Called as: exec TemporalDeclareUnique <constraint name>,
<schema>, <table>, <columns>

Columns are written in a single string, delimited by ‘[‘ and ‘]’.

For example: exec TemporalDeclareUnique ‘a_unq’, ‘dbo’, ‘a’,
‘[col1][col2]’

Pandamator 1.9.4 July 27, 2011

48

TemporalDeclareConstant

Declares a temporal CONSTANT constraint. An index on the columns will not be

created automatically.

Called as: exec TemporalDeclareConstant <constraint name>,
<schema>, <table>, <columns>

Columns are written in a single string, delimited by ‘[‘ and ‘]’.

For example: exec TemporalDeclareConstant ‘a_cst’, ‘dbo’,
‘a’, ‘[col1][col2]’

TemporalDeclareContiguousHistory

Declares the table as having contiguous history.

Called as: exec TemporalDeclareContiguousHistory <constraint
name>, <schema>, <table>

For example: exec TemporalDeclareContiguousHistory ‘CH’,
‘dbo’, ‘a’

TemporalDeclareForeignKey

Declares a foreign key. An index on the columns will not be created automatically.

Called as: exec TemporalDeclareForeignKey <constraint name>,
<foreign schema>, <foreign table>, <foreign columns>,
<primary schema>, <primary table>, <delete rule>

Columns are written in a single string, delimited by ‘[‘ and ‘]’.

For example: exec TemporalDeclareForeignKey ‘FK’, ‘dbo’, ‘a’,
‘[col1]’, ‘dbo’, ‘b’, ‘CASCADE’

TemporalUndeclareConstraint

Undeclares a constraint by name.

Called as: exec TemporalUndeclareConstraint <constraint
name>, <schema>, <table>

For example: exec TemporalUndeclareConstraint ‘PK’, ‘dbo’,
‘a’

Scheduled entities

Support for scheduled entities makes use of a temporal table named schedule_spec,

where a periodic schedule is defined in a manner reminiscent of cron, using intervals

in datetime attributes.

Columns:

• scheduleid

• scheduledweekday_from, scheduledweekday_to

• scheduleddate_from, scheduleddate_to

Pandamator 1.9.4 July 27, 2011

49

• scheduledmonth_from, scheduledmonth_to

• scheduledyear_from, scheduledyear_to

• scheduledhour_from, scheduledhour_to

• scheduledminute_from, scheduledminute_to

• duration_seconds

Schedules defined in table schedule_spec are expressed as event relations by the view

scheduled_event.

Scheduled_event makes use of calendar and time-of-day tables that are also defined in

the file.

It adds the user-defined time columns OnDate of same value as ValidOnDate. It can

be used as a tag when joining with state relations, in order to retain the scheduled

event in the joined relation. Also, OnDate participates in the primary key of

scheduled_event as a way to identify a specific event (e.g. the 8’o clock call).

Inline table-valued function schedule_events_at performs the same job but without a

need for the schedule to be stored in schedule_spec.

For example, the following retrieves all Fridays that fall on the 13
th

 during 2010.

SELECT ValidOnDate, datepart(weekday,ValidOnDate) FROM
dbo.schedule_events_at (
 6
 ,6
 ,13
 ,13
 ,null
 ,null
 ,null
 ,null
 ,0
 ,12
 ,null
 ,null
 ,'2010-01-01'
 ,'2011-01-01');

Schedules are expressed as state relations by the view scheduled_span. Scheduled

entities can be formed by joining any non-temporal entity with scheduled_span, or by

temporal-joining a temporal entity with it.

Pandamator 1.9.4 July 27, 2011

50

Figure 22: Entity scheduled using a Schedule

In the picture, an Entity is scheduled

using a Schedule, resulting in Result, a

scheduled entity defined by the

sequenced join of both

Figure 23: Non-temporal Entity scheduled

using a Schedule

In the picture, a non-temporal Entity is

scheduled using a Schedule, resulting in

Result, a scheduled entity defined entirely

by the Schedule

Scheduled_span makes use of calendar and time-of-day tables that are also defined in

the file.

It adds user-defined time columns SpanningFromDate and SpanningToDate, of same

value as ValidFromDate and ValidToDate. They can be used together as tags when

joining with state or event relations, in order to retain the scheduled span in the joined

relation. Also, SpanningFromDate participates in the primary key of scheduled_span

as a way to identify a specific span (e.g. the 8’o clock shift).

When they form consecutive spans, SpanningFromDate and SpanningToDate can be

used as grouping columns in Valid-time Cumulative Aggregation (see “Valid-time

Partitioning”).

Inline table-valued function partition_at is used to easily form consecutive spans

based on a schedule. For example, the following returns spans between all Fridays of

2010.

SELECT ValidFromDate,ValidToDate FROM dbo.partition_at (
 6
 ,6
 ,null
 ,null
 ,null
 ,null
 ,null
 ,null
 ,0
 ,0
 ,0
 ,0
 ,'2010-01-01'

Pandamator 1.9.4 July 27, 2011

51

 ,'2011-01-01');

SQL Generation

A separate program, GenerationTemplates, interprets temporal metadata that are

declared in the corresponding schema of your database, and produces an SQL script to

run against the database.

Current version needs SQL Server 2005 and runs as: GenerationTemplates
<dbserver> <user> <password>.

Beware that the generated script can be quite huge (tens of thousands of lines),

depending on how long-winded are the dependence chains of the foreign key

relationships.

The same procedure should be followed every time there is any change in the schema

or the referential constraints, after cleaning up the temporal metadata (cf. Metadata

management

Procedures dbo.DeclareTemporalMetadata and

 dbo.UndeclareTemporalMetadata do exactly what their names imply.

Cleaning up).

Things to do beforehand

Please note that all modifications to the schema, that are simple to do in SQL92, are

not included in the generated SQL, namely:

• Declaration of the special columns ValidFromDate, ValidToDate and

ValidOnDate, of type ‘datetime’

• CHECK constraint which ensures that ValidFromDate < ValidToDate

• PRIMARY KEY for event tables, which is a plain SQL92 PRIMARY KEY

Primary key support

For each primary key defined in state table <Schema>.<Table>, the following

artifacts are produced:

• View <Schema>.<Table>_PKViol, which returns primary key

violations.

• Procedure <Schema>.ChkPK_<Table>, which checks for primary key

violations. In this, and every other checking procedure, care has been taken to

produce meaningful error messages that report details about the primary key

of the entity producing the error, as well as the offending period.

• Trigger TR_PK_<Table>, which calls the procedure on every modification

to the table. In the case of a view, a separate one is defined for each base table.

Coalescing

Coalescing refers to normalizing the data to use as few rows as is possible, by way of

merging rows together.

For every state table <Schema>.<Table> the following artifacts are produced:

Pandamator 1.9.4 July 27, 2011

52

• View <Schema>.Coal_<Table>, which returns a coalesced state relation.

• Procedure <Schema>.Coalesce_<Table> which uses the view to update

the table contents with coalesced ones. Not produced for a view.

Contiguous History

For each table <Schema>.<Table> which has a Contiguous History constraint, the

following artifacts are produced:

• View <Schema>.<Table>_CHViol, which returns contiguous history

violations.

• Procedure <Schema>.ChkCH_<Table>, which checks for contiguous

history violations.

• Trigger TR_CH_<Table>, which calls the procedure on every modification

to the table. In the case of a view, a separate one is defined for each base table.

Constant

For each table <Schema>.<Table> which has a Constant constraint, the following

artifacts are produced:

• View <Schema>.<Table>_<ConName>Viol, which returns Constant

violations.

• Procedure <Schema>.Chk<ConName>_<Table>, which checks for

Constant violations.

• Trigger TR_<ConName>_<Table>, which calls the procedure on every

modification to the table. In the case of a view, a separate one is defined for

each base table.

Unique

For each table <Schema>.<Table> which has a Unique constraint, the following

artifacts are produced:

• View <Schema>.<Table>_<ConName>Viol, which returns Unique

violations.

• Procedure <Schema>.Chk<ConName>_<Table>, which checks for

Unique violations.

• Trigger TR_<ConName>_<Table>, which calls the procedure on every

modification to the table. In the case of a view, a separate one is defined for

each base table.

Foreign Key

For every foreign key defined from table <FSchema>.<FTable> to table

<PSchema>.<PTable>, the following artifacts are produced:

View <FSchema>.<FTable>_To_<PTable>_<FKName>, which reports

foreign key violations (<FTable> where Not Exists <PTable>).

Pandamator 1.9.4 July 27, 2011

53

Procedure <FSchema>.Chk<FKName>_<FTable>_To_<PTable> which

checks for foreign key violations.

Trigger TR_<FKName>_<FTable>_To_<PTable> which calls the procedure on

every modification to the foreign table. In the case of a view, a separate one of each is

defined for each base table.

Trigger FK_<FSchema>_To_<PSchema>_R which calls the procedure on every

modification to the primary table. In the case of a view, a separate one of each is

defined for each base table.

Checking the integrity

For every table <Schema>.<Table>, a procedure <Schema>.Chk_<Table> is

defined that calls all integrity-checking procedures on that table.

Also, a procedure called dbo.CheckAll does the same database-wide.

Delete in the presence of foreign keys

For each table <Schema>.<Table>, a procedure

<Schema>.DelFrom_<Table> is defined, which deletes from a table honoring

foreign key constraints recursively outwards from the given table. Current code makes

use of a primary key value to identify what to delete from the table, but the code can

be adapted easily to other kinds of conditions, even mentioning other tables. If the

table is a non-updatable view, running it will raise an exception.

When not run inside a transaction, it creates one and rolls it back in case of an

exception.

Update

For each table <Schema>.<Table>, a procedure <Schema>.Upd_<Table> is

defined, which deletes from a table based on a primary key value. When the table has

a contiguous history, simpler SQL is used. If the table is a non-updatable view,

running it will raise an exception.

When not run inside a transaction, it creates one and rolls it back in case of an

exception.

Metadata management

Procedures dbo.DeclareTemporalMetadata and

 dbo.UndeclareTemporalMetadata do exactly what their names imply.

Cleaning up

Procedure dbo.CleanAll removes all database entities created by the generated

script, except itself.

Run-time support

The run-time support is included in the same executable, Pandamator.dll, which must

be referenced by the .Net code wishing to use it (use “Add Reference” in Visual

Studio).

Pandamator 1.9.4 July 27, 2011

54

ReadMetadata

In order to read the metadata from the database, one must create a connection string

and call ReadMetadata:

Metadata.TemporalMetadata metadata =
Metadata.ReadMetadata(connString);

The returned value (here assigned to variable tables_list) holds the metadata and

will be passed to all the other functions.

CreateSQLDeleteCascading

Function CreateSQLDeleteCascading creates a statement block that will act on a

table, specified by a schema name and a table name, and delete from it based on a

condition, specified in SQL. The condition must not reference any other temporal

table and must use the marker {0} as a table alias. This marker will be substituted as

needed in the generated text.

To execute this statement block, one must supply values for the parameters

@ValidFromDate and @ValidToDate, which together form the deletion interval, and

also for all parameters mentioned in the condition string.

The statement block takes care of all delete rules invoked by the deletion, like the

generated procedure DelFrom_<table>, which is in fact created using the same SQL

generation mechanism.

Example code in C# follows.

string deleteSql = Templates.CreateSQLDeleteCascading(metadata,
"dbo", "A", "{0}.val < @val");

SqlTransaction transaction = connection.BeginTransaction();

SqlCommand command = new SqlCommand(deleteSql, connection);

command.Parameters.Add(new SqlParameter("@ValidFromDate", new
DateTime(2008, 03, 10)));
command.Parameters.Add(new SqlParameter("@ValidToDate", new
DateTime(2008, 03, 20)));
command.Parameters.Add(new SqlParameter("@val", 100));
command.Transaction = transaction;

try
{
 command.ExecuteNonQuery();
 transaction.Commit();
}
catch (Exception e)
{
 Console.WriteLine(e.Message);
 transaction.Rollback();
}

Pandamator 1.9.4 July 27, 2011

55

CreateSQLUpdateNonKey

Function CreateSQLUpdateNonKey creates a statement block that will act on a table,

specified by a schema name and a table name, and update it based on a condition,

specified in SQL, and an update map. The update map is a Dictionary having key-

value pairs for all table attributes to update and associated expressions, specified as

strings.

The condition and the update expressions must not reference any other temporal table

and must use the marker {0} as a table alias. This marker will be substituted as

needed in the generated text.

To execute this statement block, one must supply values for the parameters

@ValidFromDate and @ValidToDate, which together form the deletion interval, and

also for all parameters mentioned in the condition string and the update expressions.

The statement block works like the generated procedure Upd_<table>, which is in

fact created using the same SQL generation mechanism.

Example code in C# follows.

Dictionary<string, string> strings = new Dictionary<string,
string>();

strings.Add("val", "{0}.val + 5");

string updateSql = Templates.CreateSQLUpdateNonKey(metadata, "dbo",
"A", strings, "{0}.val > 100");

SqlTransaction transaction = connection.BeginTransaction();

SqlCommand command = new SqlCommand(updateSql, connection);

command.Parameters.Add(new SqlParameter("@ValidFromDate", new
DateTime(2008, 03, 10)));
command.Parameters.Add(new SqlParameter("@ValidToDate", new
DateTime(2008, 03, 11)));
command.Transaction = transaction;

try
{
 command.ExecuteNonQuery();
 transaction.Commit();
}
catch (Exception e)
{
 Console.WriteLine(e.Message);
 transaction.Rollback();
}

CreateCoalescingCTEs

Function CreateCoalescingCTEs creates a statement fragment with CTEs that

define a coalesced relation, whose name is provided by the programmer, on a subset

of a table’s columns, using the recursive coalescing code described earlier.

Optionally, one can provide a filtering condition. This fragment can then be

Pandamator 1.9.4 July 27, 2011

56

prepended to a statement using the coalesced relation, like select * from R , or
select a, b, min(ValidToDate-ValidFromDate) from R into

#temp group by a, b.

Using Temporal SQL (experimental)

Function make_sql92_from_temporal creates SQL2 given a statement in ATSQL as

defined in this text. As of this time, only SELECT statements are supported, and the

support is experimental. Various restrictions apply, such as lack of support for

sequenced subqueries inside non-sequenced ones.

Example code in C# follows.

var sql92_query = Transform.make_sql92_from_temporal(metadata,
atsqlcode);

Pandamator 1.9.4 July 27, 2011

57

Description of test data and test execution

Test data consist of a number of state and event tables linked by Foreign Key

relationships with various ON DELETE rules. An auxiliary program,

ABCTimelineVizualizer, uses a Simile Timeline widget inside an HTML page to help

visualize the data. Although I have tried to manipulate the results in order to be

presented in the most useful manner, you will notice that the results are sometimes

bizarre-looking.

Sample “A, B, C” data

The following graph illustrates these relationships. Tables “D”, “E” and “F” are event

tables.

A

B

G
C H

D E
F

CASCADE

CASCADE

CASCADE

SET NULL

SET NULL

RESTRICT

RESTRICT

Figure 24: FK relationships of Sample "A, B, C" date

The following chart illustrates the sample data.

Pandamator 1.9.4 July 27, 2011

58

Figure 25: Chart of "A, B, C" Sample Data

The schema is created by Sample-ABC-schema.sql and the data insertion/re-insertion

script is Sample-ABC-data.sql.

Calling the deletion procedure inside a transaction

We will call DelFrom_A with various arguments in order to attempt to delete A and

verify the delete rules of the foreign keys that will be invoked.

DECLARE @RC int;
DECLARE @ValidFromDate datetime;
DECLARE @ValidToDate datetime;
DECLARE @id int;

set @ValidFromDate='2008-01-13';
set @ValidToDate='2008-03-10';
set @id=1;
set @RC = 0

begin transaction;

begin try;
EXECUTE [Temporal2].[dbo].[DelFrom_A]
 @ValidFromDate
 ,@ValidToDate
 ,@id;
end try;

begin catch;
set @RC = -1;
end catch;

if @RC = 0
commit
else
rollback;

In order to recover from failures, the conditional statement ensures the rollback of the

transaction.

Pandamator 1.9.4 July 27, 2011

59

RESTRICT from D to C and from G to B

Trying to delete A from Jan 13
th

 to March 20
th

, the RESTRICT delete rule from D to

C takes over and prohibits this update.

Msg 50000, Level 16, State 2, Procedure DelFrom_A, Line 66
Transaction violates RESTRICT delete rule for foreign key from dbo.D to C while
deleting from dbo.A, e.g. id=1 ValidOnDate="Mar 12 2008 12:00AM"

The presence of a D event on March 12
th

 rolled back the whole operation. One can

verify that no data have been modified.

Trying to delete up to March 10
th

 avoids D, but stumbles on G from February 10
th

to

March 1
st
.

Msg 50000, Level 16, State 2, Procedure DelFrom_A, Line 325
Transaction violates RESTRICT delete rule for foreign key from dbo.G to B while
deleting from dbo.A, e.g. id=1 ValidFromDate="Feb 10 2008 12:00AM" ValidToDate="Mar 1
2008 12:00AM"

The reason that D is tested before G, is that the tree traversal of the foreign key

relationships happens in the particular order.

CASCADE to B, C and E

Deleting from May 16
th

 to July 20
th

 avoids the objects that restrict deletion.

Figure 26: Cascade in "A, B, C" Sample Data

As you can see, B, C and E are deleted according to the CASCADE delete rule.

SET NULL on H and on F

Deleting A from January 4
th

 to January 8
th

, cascades to B and SETs NULL on H.

Pandamator 1.9.4 July 27, 2011

60

Figure 27: Set Null in "A, B, C" Sample Data (states)

The H that is shown out of place has a null foreign key to B.

Finally, in order to test SET NULL on F events, we will call DelFrom_C from April

5
th

 to April 15
th

.

Figure 28: Set Null in "A, B, C" Sample Data (events)

The F that is shown out of place has a null foreign key to C.

Pandamator 1.9.4 July 27, 2011

61

References

Lorentzos

http://portal.acm.org/citation.cfm?id=213476

Jensen Thesis

http://www.cs.aau.dk/~csj/Thesis/

Snodgrass: Developing Time-Oriented Database Applications in
SQL

http://www.cs.arizona.edu/~rts/publications.html

Andreas Steiner Thesis

http://www.globis.ethz.ch/people/former/thesisSteiner.pdf

TimeDB

http://www.timeconsult.com/Software/Software.html

Michael Boehlen Thesis

http://www.sigmod.org/databaseSoftware/chronolog.txt

(Download ChronoLog 3.0, the thesis is included)

Consensus Glossary of Temporal Database Concepts – February
1998 Version

http://infolab.usc.edu/csci599/Fall2001/paper/glossary.pdf

SIMILE Timeline

http://www.simile-widgets.org/timeline/

Teradata Temporal Option

http://www.teradata.com/t/database/Teradata-Temporal/

Pandamator 1.9.4 July 27, 2011

62

Appendix A: Query Transformation Example (Not
Coalesced)

The query that is transformed, is the following, where “a”, “b” and “c” are all state

relations. Notice the “keyword” FULL that instrau

FULL VALIDTIME
SELECT b.id,a.value
FROM b
INNER JOIN a ON b.a_id=a.id
WHERE not exists(SELECT * FROM c WHERE c.value<a.value)

The SQL92 query, that results from the transformation, is the following. Note that

legible identation and bracketing are not yet very high in the priority list…

WITH spanboundaries(TheDate) AS (
(SELECT ValidFromDate AS TheDate
FROM b)
union
((SELECT ValidToDate AS TheDate
FROM b)
union
((SELECT ValidFromDate AS TheDate
FROM a)
union
((SELECT ValidToDate AS TheDate
FROM a)
union
((SELECT ValidFromDate AS TheDate
FROM c)
union
(SELECT ValidToDate AS TheDate
FROM c)))))
),
spans(ValidFromDate,ValidToDate) AS (
SELECT a.TheDate AS ValidFromDate,b.TheDate AS ValidToDate
FROM spanboundaries AS a
INNER JOIN spanboundaries AS b ON a.TheDate<b.TheDate and not
exists(SELECT *
FROM spanboundaries AS c
WHERE a.TheDate<c.TheDate and c.TheDate<b.TheDate)
)
SELECT b.id AS t0,a.value AS t1
FROM spans
INNER JOIN b ON b.ValidFromDate<=spans.ValidFromDate and
spans.ValidToDate<=b.ValidToDate
INNER JOIN a ON(b.a_id=a.id)and(a.ValidFromDate<=spans.ValidFromDate
and spans.ValidToDate<=a.ValidToDate)
WHERE not exists(SELECT *
FROM c
WHERE(c.value<a.value)and(c.ValidFromDate<=spans.ValidFromDate and
spans.ValidToDate<=c.ValidToDate))
ORDER BY ValidFromDate,ValidToDate;

Pandamator 1.9.4 July 27, 2011

63

Appendix B: Query Transformation Example
(Coalesced)

The query that is transformed, is the following, where “a”, “b” and “c” are all state

relations.

VALIDTIME
SELECT b.id,a.value
FROM b
INNER JOIN a ON b.a_id=a.id
WHERE not exists(SELECT * FROM c WHERE c.value<a.value)

The SQL92 query, that results from the transformation, is the following.

WITH spanboundaries(TheDate) AS (
(SELECT ValidFromDate AS TheDate
FROM b)
union
((SELECT ValidToDate AS TheDate
FROM b)
union
((SELECT ValidFromDate AS TheDate
FROM a)
union
((SELECT ValidToDate AS TheDate
FROM a)
union
((SELECT ValidFromDate AS TheDate
FROM c)
union
(SELECT ValidToDate AS TheDate
FROM c)))))
),
spans(ValidFromDate,ValidToDate) AS (
SELECT a.TheDate AS ValidFromDate,b.TheDate AS ValidToDate
FROM spanboundaries AS a
INNER JOIN spanboundaries AS b ON a.TheDate<b.TheDate and not
exists(SELECT *
FROM spanboundaries AS c
WHERE a.TheDate<c.TheDate and c.TheDate<b.TheDate)
),
R(t0,t1,ValidFromDate,ValidToDate) AS (
SELECT b.id AS t0,a.value AS t1
FROM spans
INNER JOIN b ON b.ValidFromDate<=spans.ValidFromDate and
spans.ValidToDate<=b.ValidToDate
INNER JOIN a ON(b.a_id=a.id)and(a.ValidFromDate<=spans.ValidFromDate
and spans.ValidToDate<=a.ValidToDate)
WHERE not exists(SELECT *
FROM c
WHERE(c.value<a.value)and(c.ValidFromDate<=spans.ValidFromDate and
spans.ValidToDate<=c.ValidToDate))
),
Coal(t0,t1,ValidFromDate,ValidToDate) AS (
(SELECT p2.t0 AS t0,p2.t1 AS t1
FROM Coal AS p1
WHERE not exists(SELECT R.*

Pandamator 1.9.4 July 27, 2011

64

FROM R AS p1
WHERE(p1.t0=p2.t0 or coalesce(p1.t0,p2.t0) is null)and(p1.t1=p2.t1 or
coalesce(p1.t1,p2.t1) is null)and p1.ValidToDate = p2.ValidFromDate
GROUP BY t0,t1,ValidFromDate)
GROUP BY t0,t1,ValidFromDate)
union
(SELECT p2.t0 AS t0,p2.t1 AS t1
FROM R AS p1
INNER JOIN R AS p2 ON p1.ValidToDate = p2.ValidFromDate
and(p1.t0=p2.t0 or coalesce(p1.t0,p2.t0) is null)and(p1.t1=p2.t1 or
coalesce(p1.t1,p2.t1) is null))
),
Coalesced(t0,t1,ValidFromDate,ValidToDate) AS (
SELECT p1.t0 AS t0,p1.t1 AS t1
FROM R AS Coal
GROUP BY t0,t1,ValidFromDate
)
SELECT *
FROM Coalesced;

